國立交通大學 96 學年度碩士班考試入學試題

科目:普通物理(4012) 考試日期:96年3月18日 第 3 節

系所班別:電子物理學系 組別:電物所甲組 第 1頁,共 2頁

**作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!

Part one, single choice: (40%, 每題5%) 不倒扣

- n moles of Ar gas changes from an initial state (P₀, V₀, T₀) to a final state (P₀/3, 3V₀, T₀) by a sudden, irreversible, free expansion. If C_v and C_p are the molar specific heats at constant volume and pressure, respectively, and γ = C_v/C_p. Then the change of the entropy during this process is (A) 0, (B) nR ln2, (C) nR ln3, (D) γnR ln3, (E) (γ-1)nR ln3.
- A rope of total mass m and length d is suspended vertically. The time t for a transverse wave pulse to travel the entire length of the rope is

(A) $\sqrt{\frac{d}{g}}$, (B) $\sqrt{\frac{2d}{g}}$, (C) $2\sqrt{\frac{d}{g}}$, (D) $\sqrt{\frac{d}{2g}}$, (E) $\frac{1}{2}\sqrt{\frac{d}{g}}$.

3. A chain of length d and total mass m is released from rest with its lower end just touching the top of a table, as in Figure 1a. Assume each link comes to rest the instant it reaches the table, then the force exerted by the table on the chain after the chain has fallen through a distance x, as in Figure 1b, is

(A) $\frac{3mgx}{d}$, (B) $\frac{2mgx}{d}$, (C) $\frac{mgx}{d}$, (D) $\frac{mgx}{3d}$, (E) $\frac{3mgx}{2d}$.

4. The potential energy of the two atoms in a diatomic (two-atom) molecule can be written
U(r) = -\frac{a}{r^6} + \frac{b}{r^{12}} \text{ where } r \text{ is the distance between the two atoms and } a \text{ and } b \text{ are positive constants. The binding energy of a two-particle system is defined as the energy required to separate the two particles from their state of lowest energy to r = ∞. Find the binding energy for the molecule:

Figure 1 (a)

(A)
$$\frac{a^2}{2b}$$
, (B) $\frac{2a^2}{b}$, (C) $\frac{4a^2}{b}$, (D) $\frac{a^2}{4b}$, (E) $\frac{a^2}{b}$.

5. A rod of length L has a total charge Q uniformly distributed over the rod. Find the force acting by Q on a charge q, which is located along the long axis of the rod and a distance d from one end of the rod.

(A) $q(Q/L)/(4\pi\epsilon_0 d)$, (B) $qQ/[4\pi\epsilon_0 L(L+d)]$, (C) $q(Q/L)/[4\pi\epsilon_0 L(L+d)]$, (D) $qQ/[4\pi\epsilon_0 d(L+d)]$, (E) $qQ/(\epsilon_0 dL)$.

6. What is the capacitance of an isolated charged metal sphere which has radius R? (A) 4πRε₀, (B) R/4πε₀, (C) (4π/3)R³ε₀, (D) 4πR²ε₀, (E) 4πR²/ε₀.

國立交通大學 96 學年度碩士班考試入學試題

科目:普通物理(4012) 考試日期:96年3月18日 第 3 節

系所班別:電子物理學系 組別:電物所甲組 第 2頁,共 3頁

**作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!

7. Molybdenum has a work function of 4.20 eV. What is the stopping potential if the incident light has a wavelength of 200 nm?

(A) 26 V, (B) 8.4 V, (C) 2.0 V, (D) 1.0 V, (E) 0.1 V.

8. A student uses a microscope to observe micro-structures. The wavelength of the illumination light is 600 nm. The aperture of the objective has a diameter of 1.22 cm. What is the limiting angle of resolution?

(A) 2 degree, (B) 5×10⁻⁵ degree, (C) 6×10⁻⁵ rad, (D) 732 rad, (E) 2×10⁵ rad.

Part two, problems: (60%, 每題 15%)

- 9. A solid sphere of radius R and mass M is placed in a cylindrical trough (radius = 5R), as shown in Figure 2. The sphere is released from rest at a small angle θ₀ to the vertical and rolls without slipping. The rolling direction is perpendicular to the length of the trough.
- (a) **Show** that the magnitude of the angular speed of the sphere can be expressed as $|\omega| = 4 \frac{d\theta}{dt}$ (3%).
- (b) Determine the angular speed of the sphere when it reaches the bottom of the trough (3%).

(c) Find the equation of motion for θ (5%).

(d) Show that the sphere executes simple harmonic motion and find the period T of the simple harmonic motion. (4%)

Notes: (1) The moment of the inertia of a solid sphere about its symmetry axis is $I = 2/5 MR^2$.

(2)
$$\sin \theta = \theta - \theta^3/3! + \theta^5/5! - \cdots$$

 $\cos \theta = 1 - \theta^2/2! + \theta^4/4! - \cdots$

Figure 2

國立交通大學 96 學年度碩士班考試入學試題

科目:普通物理(4012) 考試日期:96年3月18日 第 3 節

系所班別:電子物理學系 組別:電物所甲組 第 3 頁,共 3 頁

**作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!

- 10. Suppose a person of mass $m = 6.5 \times 10^1 \, kg$ is running at a speed $v = 3.8 \, m/s$ and has a catabolic (分解代謝) power output (that is, rate of internal energy consumption) $9.45 \times 10^2 W$ during a $1.0 \times 10^1 \, km$ workout. Suppose the runner converts 20% of the internal energy change into mechanical work. The rest of the energy goes into heat. If the specific heat of the runner is $c = 4.19 \times 10^3 \, J \, kg K$, how much would the body temperature rise after running the $10 \, km$? (15%)
- 11. A series *RLC* circuit has $R = 200 \ \Omega$, $L = 250 \ \text{mH}$, and $C = 10.0 \ \mu\text{F}$. The applied voltage has an amplitude of 50.0 V and an angular frequency (ω) of 1000 Hz. Find the following amplitudes: (a) The current I_{max} , (b) the voltage ΔVc across the capacitor and its phase relative to the current, and (c) the voltage ΔVc across the inductor and its phase relative to the current.(15%)
- 12. A conducting rod of length ℓ moves with velocity v(t)=5t (m/s) parallel to a long wire carrying a steady current I, where t is in second. The axis of the rod is maintained perpendicular to the wire with the near end a distance r (= ℓ) away. Find the emf induced in the rod at t=3 second. (15%)