單選題(每題5分, 共100分)

- 1-3. A solid uniform disk of mass 21.0kg and radius 85.0cm is at rest flat on a frictionless surface. A string is wrapped around the rim of the disk and a constant force of 30N is applied to the string. The string does not slip on the rim. [I_{COM} for the disk is $1/2MR^2$] When the disk has moved a distance of 9.0m
- 1. ()How fast is it moving?
- **A.** 2.6m/s, **B.** 5.1m/s, **C.** 10.3m/s, **D.** 20.4m/s, **E.** None of the above
- 2. ()How fast is it spinning?
- **A.** 3.0 rad/s, **B.** 6.2 rad/s, **C.** 11.9 rad/s **D.** 23.5 rad/s, **E.** None of the above
- 3. ()How much string (length) has unwrapped from around the rim? (4%)
- A. 4.5m, B. 9m, C.18m, D. 36m, E. None of the above
- 4-5. In Fig. 1, a uniform beam of length L is supported by a horizontal cable and a hinge at angle θ . The tension in the cable is T.
- 4. ()The gravitational force on the beam is
- **A**. $-2\text{Tcot}\theta \hat{j}$, **B**. $-2\text{Tsin}\theta \hat{j}$, **C**. $-2\text{Tcos}\theta \hat{j}$, **D**. $-2\text{Ttan}\theta \hat{j}$, **E**. None of the above
- 5. () The force on the beam from the hinge is
- **A.** $2T\cos\theta \hat{i} + T\hat{j}$, **B.** $T\sin\theta \hat{i} + 2T\cot\theta \hat{j}$, **C.** $T\cos\theta \hat{i} + 2T\tan\theta \hat{j}$, **D.** $T\hat{i} + 2T\cot\theta \hat{j}$, **E.** None of the above

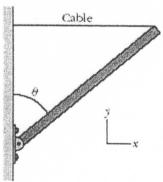


Fig. 1

- 6-7. Two trains are traveling toward each other at v_t relative to the ground. One train is blowing a whistle at a frequency of f. The speed of sound in air is v.
- 6. () What frequency is heard on the other train if the wind is blowing at v_w toward the whistle and away from the listener?

A.
$$f \frac{v + v_t - v_w}{v - v_t - v_w}$$
, **B.** $f \frac{v + v_t + v_w}{v - v_t + v_w}$, **C.** $f \frac{v - v_t - v_w}{v + v_t + v_w}$, **D.** $f \frac{v + v_t + v_w}{v - v_t - v_w}$, **E.** None of the above

7. () What frequency is heard if the wind direction is reversed?

A.
$$f \frac{v + v_t - v_w}{v - v_t - v_w}$$
, **B.** $f \frac{v + v_t + v_w}{v - v_t + v_w}$, **C.** $f \frac{v - v_t - v_w}{v + v_t + v_w}$, **D.** $f \frac{v + v_t + v_w}{v - v_t - v_w}$, **E.** None of the above

- 8-9. Fig. 2 shows a stream of water flowing through a hole at depth h in a tank holding water to height H.
- 8. () At what distance *x* does the stream strike the floor?

A.
$$\sqrt{H^2-h^2}$$
, **B.** $2\sqrt{H^2-h^2}$, **C.** $\sqrt{Hh-h^2}$ **D.** $2\sqrt{Hh-h^2}$, **E.** None of the above

9. () At what depth should a hole be made to maximize x?

A. H, **B**. H/2, **C**. H/4, **D**. H/8, **E**. None of the above

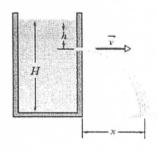


Fig. 2

10-11. A container has a valve that divides it into two parts (A and B), as shown in the figure. The left-hand side (with a volume of V_0) holds an ideal gas at a pressure of $3p_0$, and the right-hand side (with a volume of $4V_0$) holds an ideal gas at a pressure of p_0 . Both gases are at room temperature T_0 . The valve is opened, and the gases are allowed to mix without reaction.

10. () What is the pressure in the container?

A. $4p_0/3$, **B.** $3p_0/4$, **C.** $7p_0/5$, **D.** $5p_0/7$, **E.** None of the above

11. () What is the entropy increase of the system?

$$\mathbf{A}.\frac{P_{0}V_{0}}{T_{0}}(3\ln 5+4\ln 1.25),\,\mathbf{B}.\frac{3P_{0}V_{0}}{T_{0}}(4\ln 5+3\ln 1.25),\,\mathbf{C}.\frac{2P_{0}V_{0}}{T_{0}}(3\ln 5+4\ln 1.25),$$

D. $\frac{2P_0V_0}{T_0}$ (4 ln 5 + 3 ln 1.25), **E**. None of the above

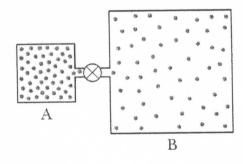


Fig. 3

12-13. A solid nonconducting sphere of radius R has a nonuniform charge distribution of volume charge density $\rho = \rho_s r/R$, where r is radial distance from the sphere's center.

12. () What is the sphere's total charge?

A. $2\pi\rho_s R^2$, **B.** $3\pi\rho_s R$, **C.** $\pi\rho_s R^2$ **D.** $\pi\rho_s R^3$, **E.** None of the above

13. () What is the magnitude E of the electric field at r = R/2?

A. $\frac{\rho_s R}{4\varepsilon_0}$, **B.** $\frac{\rho_s R}{8\varepsilon_0}$, **C.** $\frac{\rho_s R}{16\varepsilon_0}$, **D.** $\frac{\rho_s R}{32\varepsilon_0}$, **E.** None of the above

14. (). Figure 4 shows, in cross section, two solid spheres with uniformly distributed charge throughout their volumes. Each has radius R. Point P lies on a line connecting the centers of the spheres, at radial distance R/2.00 from the center of sphere 1. If the net electric field at point P is zero, what is the ratio q_2/q_1 of the total charge q_2 in sphere 2 to the total charge q_1 in sphere 1?

A. 9/8, **B.** 2/3, **C.** 7/5, **D.** 11/6, **E.** None of the above

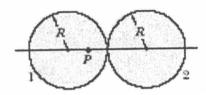


Fig. 4

15. () Figure 5 shows a cross section of a long thin ribbon of width w that is carrying a uniformly distributed total current i into the page.

What is the magnetic field \mathbf{B} at a point P in the plane of the ribbon at a distance d from its edge?

A.
$$\frac{\mu_0 i}{2\pi w} \ln\left(\frac{w}{d}\right)$$
, **B.** $\frac{\mu_0 i}{2\pi w} \ln\left(1 + \frac{w}{d}\right)$, **C.** $\frac{\mu_0 i}{\pi w} \ln\left(2 + \frac{w}{d}\right)$, **D.** $\frac{\mu_0 i}{\pi w} \ln\left(1 + \frac{w}{d}\right)$, **E.** None of the above

Fig. 5

- 16-17. In Fig. 6, after switch S is closed at time t = 0, the emf of the source is automatically adjusted to maintain a constant current i.
- 16. () The current through the inductor at time t is:
- **A.** $ie^{-Rt/L}$, **B.** $i(1-e^{-Rt/2L})$, **C.** $ie^{-Rt/2L}$, **D.** $i(1-e^{-Rt/L})$, **E.** None of the above
- 17. () At what time is the current through the resistor equal to the current through the inductor? t=
- A. 2Lln2/3R, B. Lln2/3R, C. Lln2/R, D. 2Lln2/R, E. None of the above

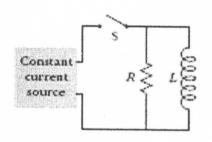


Fig. 6

- 18. () In an x-ray diffraction measurement, if first-order reflection occurs in a crystal at Bragg angle θ_1 , at what Bragg angle θ_2 does second-order reflection occur from the same family of reflecting planes? θ_2 = **A**. $2\theta_1$, **B**. $2\sin\theta_1$, **C**. $\sin^{-1}(2\theta_1)$, **D**. $\sin^{-1}(2\sin\theta_1)$, **E**. None of the above
- 19-20. An electron and a photon each have a wavelength of λ . h is the Planck constant and m_e is the mass of electron.
- 19. () What is the energy of the electron?
- ${\bf A.~h^2/2m_e\lambda^2},~{\bf B.~h/2m_e\lambda},~{\bf C.~h^2/m_e\lambda^2},~{\bf D.~h/m_e\lambda},{\bf E.~None}~of~the~above$
- 20. () What is the energy of the photon?
- A. $c/h\lambda$, B. hc/λ , C. $h\lambda/c$, D. λ/hc , E. None of the above