普通物理 科目

類組別 A3 A4 A7

共4頁第/頁

*請在試卷答案卷(卡)內作答

Part I. 單選題 (每題 6 分,共 60 分,答錯不倒扣)。

- The Kelper's second law of planetary motion is that the line joining the sun to a planet sweeps out equal areas in equal times. Which one of the following principles is the fundamental of the Kelper's second law?
 - (A) second law of thermal dynamics
 - (B) Hooke's law
 - (C) conservation of energy
 - (D) conservation of linear momentum
 - (E) conservation of angular momentum
- A ring of mass M and radius R is shown in the right. What is the moment of inertia along the x-axis? moment of inertia along the x-axis?
 (A) $_{\pi MR^2}$ (B) $_{\frac{\pi}{2}MR^2}$ (C) $_{2MR^2}$ (D) $_{MR^2}$ (E) $_{\frac{1}{2}MR^2}$

The position of a block attached to a string oscillates as $x(t) = x_0 \cos(\omega t)$, where x_0 is the amplitude, ω is the angular frequency, and t is time. Therefore, the kinetic energy of the block is also a periodic function of time. What is the period of the kinetic energy?

 $(A)_1$

(B) $\frac{1}{2\omega}$ (C) $\frac{2\pi}{\omega}$ (D) $\frac{\pi}{\omega}$ (E) $\frac{\pi}{2\omega}$

A wire is stretched from L to $L + \Delta L$. The Young's modulus of the wire is Y and the density of the wire is ρ . What is the speed of a transverse wave propagated through the wire?

(A) $\sqrt{\frac{Y}{\rho}} \frac{\Delta L}{L}$ (B) $\sqrt{\frac{2Y}{\rho}} \frac{\Delta L}{L}$ (C) $\sqrt{\frac{2Y}{\rho}} \left(\frac{\Delta L}{L}\right)$ (D) $\sqrt{\frac{\rho}{2Y}} \frac{\Delta L}{L}$ (E) $\sqrt{\frac{\rho}{Y}} \frac{\Delta L}{L}$

The Temperature(T)-Entropy(S) diagram of the Carnot cycle is shown in the right figure (solid line). What area in the T-S diagram represents the work done by the system in each cycle?

(A) α (B) β (C) γ (D) $\alpha + \beta$ (E) $\beta + \gamma$

*請在試卷答案卷(卡)內作答

A charge q sits at the back corner of a cube, as shown. The length of the edge of the cube is L and the permittivity constant is ε_0 . What is the

The pattern of capacitors of equal value C shown in the right figure is repeated indefinitely. What is A . the effective capacitance between the terminals A

and
$$B$$
?

(A) $\left(\frac{\sqrt{5}}{2}\right)C$

(B) $\left(\frac{\sqrt{5}+1}{2}\right)C$

(C) $\left(\frac{3}{2}\right)C$

(D)
$$\left(\frac{5}{2}\right)C$$
 (E) $\left(\frac{\sqrt{3}-1}{2}\right)C$

As shown, a charge particle q is inject into a space with uniform electric field $E = E_0 x$, where E_0 is the absolute value of the electric field and x is the unit vector along the x-axis. The initial velocity of the particle is $v = v_0 y$, where y is the unit vector along the y-axis. A magnetic field B is applied into the same space to maintain the velocity of the particle. Which one of the following fields is the correct one?

(A)
$$B = \frac{E_0}{v_0} x$$
 (B) $B = \frac{-E_0}{v_0} z$ (C) $B = \frac{v_0}{E_0} z$ (D) $B = \frac{-v_0}{E_0} x$ (E) $B = \frac{-E_0}{v_0} x$

$$\frac{E_0}{E_0} \mathbf{z} \qquad \mathbf{B} = \frac{v_0}{E_0}$$

(D)
$$B = \frac{-v_0}{E_0} \times$$

(E)
$$B = \frac{-E_0}{v_0} x$$

A long, straight wire carries a constant current I. A metal rod of length L moves at velocity ν relative to the wire, as shown. The distance between Ithe wire and rod is d. What is the potential difference between the ends of the rod?

(A)
$$\frac{\mu_0 I v}{2\pi} \left(\frac{d+L}{d} \right)$$

(A)
$$\frac{\mu_0 I v}{2\pi} \left(\frac{d+L}{d} \right)$$
 (B) $\frac{\mu_0 I v}{2\pi} \ln \left(\frac{d+L}{d} \right)$ (C) $\frac{\mu_0 I v}{\pi} \left(\frac{d+L}{d} \right)$

(C)
$$\frac{\mu_0 I v}{\pi} \left(\frac{d+L}{d} \right)$$

(D)
$$\frac{\mu_0 I v}{\pi} \ln \left(\frac{d+L}{d} \right)$$
 (E) $\frac{\mu_0 I v}{\pi} \exp \left(\frac{d+L}{d} \right)$

科目 普通物理 類組別 A3 A4 A7

共4頁第3頁

*請在試卷答案卷(卡)內作答

10. A light source emits a light wave with frequency f_0 to an observer. At the same time, the observer moves toward the light source with speed v = 1/2 c, where c is the speed of light. What is the frequency observed by the observer?

^_

(A)
$$\frac{1}{\sqrt{3}}f_0$$

(A)
$$\frac{1}{\sqrt{3}} f_0$$
 (B) $\frac{1}{2} f_0$ (C) f_0 (D) $\sqrt{2} f_0$ (E) $\sqrt{3} f_0$

$$(C)_{f_0}$$

$$(D)\sqrt{2}f_0$$

Part II. 複選題 (每題 8 分, 共 40 分, 每個選項答對得 1.6 分, 答錯倒扣 1.6 分)。

- 11. Consider an ideal gas system. Which ones of the following physical quantities are "state variables"?
 - (A) internal energy
- (B) volume
- (C) entropy
- (D) temperature
- (E) pressure
- 12. Which ones of the following statements of the second law of thermodynamics are wrong?
 - (A) No cyclical heat engine has a greater efficiency than a reversible engine operating between the same two temperatures.
 - (B) It is impossible for a cyclical device to transfer heat continuously from a hot body to a cold body without the input of work or other effect on the environment.
 - (C) It is impossible for a heat engine that operates in a cycle to convert its work input completely into heat.
 - (D) In a reversible process the entropy of an isolated system stays constant; in an irreversible process the entropy decreases.
 - (E) In a reversible process the entropy of an isolated system increases; in an irreversible process the entropy stays constant.
- 13. Which ones of the following principles can be used to explain the propagation of light?
 - (A) Fermat's principle of least time
 - (B) Hooke's law of elasticity
 - (C) Pauli's exclusion principle
 - (D) Heisenberg's uncertainty principle
 - (E) Huygens' principle of wave
- 14. Which ones of the following concepts must be applied to explain the features the Compton scattering effect?
 - (A) quantization of the bound electron energy levels in atom
 - (B) quantization of the electron spin
 - (C) quantization of the energy of the electromagnetic field
 - (D) quantization of the angular momentum of the electromagnetic field
 - (E) quantization of the linear momentum of the electromagnetic field

: 背面有試題

科目_普通物理

類組別 A3 A4 A7

共<u>4</u>頁 第<u>4</u>頁 *請在試卷答案卷(卡)內作答

15. Which ones of the following process are nuclear reactions?

- (A) alpha particle emission from ²²⁶Ra
- (B) proton emission from 87Br
- (C) fusion of ¹H to be ⁴He
- (D) ionization of ¹H to be electron and proton
- (E) combination of H_2 and O_2 to be water