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In 1905, inspired by Planck’s pioneering work on blackbody radiation,
Einstein proposed that light exists as discrete quanta, now referred as “pho-
ton”. The energy of a single photon is related to its frequency,

E = ~ω, (1)

where ~ ≡ h/2π. In 1917, Einstein extended his idea of photons and proposed
that a single photon also carries momentum,

p = ~k, (2)

where k is the wave number of light. The above relations reveal the dual na-
ture of photons. On the left-hand side, energy E and momentum p are often
associated with the particle perspective. On the right-hand side, (angular)
frequency ω and wave number k are associated with waves. Intuitions built
upon daily experiences make “particle” and “wave” incompatible concepts
and we are keen to know whether light is particle or wave in classical sense.
Well, welcome to the quantum world! In quantum wonderland, photons can
exhibit both particle and wave nature, depending on how the experiment is
set up. We need to put these classical notions aside and cultivate intuitions
about quantum phenomena based on experimental facts.

• Compton effect

In 1923, Compton discovered that the wavelength of the x ray increases
slightly when scattered from a target. The schematic diagram for the exper-
imental setup can be found in Figure 1. It is rather remarkable that the shift
in the wavelength is captured by the simple formula,

∆λ =
h

mec
(1− cosφ), (3)

where me is the electron mass. Just four years later, Compton received the
1927 Nobel prize “for his discovery of the effect named after him”. The
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Figure 1: The Compton effect can be explained by collision between photon
and electron. A photon of wavelength λ0 collides with an electron at rest.
After the scattering, the photon recoils at an angle φ with a larger wavelength
λ while the electron flies away with speed v at an angle θ.

Compton effect can be explained easily by the collision between photon and
electron. Conservation of energy for the photon-electron system requires that

hc

λ0
+mec

2 =
hc

λ
+

mec
2√

1− (v/c)2
. (4)

The relativistic treatment is necessary because the scattered electron may
carry high speed comparable to the speed of light. Meanwhile, the momen-
tum of the photon-electron system is also conserved,

h

λ0
=
h

λ
cosφ+

mev√
1− (v/c)2

cos θ, (5)

0 =
h

λ
sinφ− mev√

1− (v/c)2
sin θ. (6)

In the photon-electron scattering, there are four unknowns, λ, v, φ, θ and we
have three equations from the conservation laws. One indeed needs a more
sophisticated theory to achieve the full understanding. However, we can
eliminate two variables v and θ (both associated with the scattered electron)
and derive the relation between the remaining variables λ and φ. After some
algebra, one finds that

λ− λ0 =
h

mec
(1− cosφ). (7)

Try to carry out the necessary algebra to eliminate v and θ and derive the
Compton shift formula by yourself. You may try eliminating θ first by com-
bining the two equations from the momentum conservation. Then, try to get
rid of the square root in the equation from the energy conservation.
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• electromagnetic waves in thermal equilibrium

Now let us visit the famous thermal radiation problem originally solved by
Planck in 1900. We will try to understand this interesting phenomenon in a
slightly different angle suggested by Bose in 1924. According to the Maxwell’s
equations, the energy of an electromagnetic wave with wave number k (and
thus a definite frequency ω) inside a cavity of volume V is

E(ω) =

〈
1

2
ε0E

2 +
1

2µ0

B2

〉
V. (8)

The above form is similar to that for a simple harmonic oscillator. According
to statistical mechanics, the average energy of a simple harmonic oscillator in
thermal equilibrium is just kT , independent of other detail parameters. This
result is known as the equipartition theorem of energy. Not surprisingly, after
similar calculations, the average energy U(ω) of the electromagnetic wave in
thermal equilibrium also follows the equipartition theorem,

U(ω) = kT. (9)

But, we immediately run into a big trouble. The total energy of the electro-
magnetic waves in thermal equilibrium is the sum of U(ω) over all possible
wave numbers. Because there are infinite possible wave numbers, the total
energy is divergent. This cannot be true because it will directly leads to
explosive thermal radiations at finite temperature. So, the marriage between
Maxwell (electromagnetism) and Boltzmann (statistical mechanics) doesn’t
go very well. Who is the one to be blamed? It turns out to be Maxwell in
this case, ha!

• Planck distribution

Consider photons with wave number k (and thus a definite frequency ω) in
thermal equilibrium. The probability to find n photons is described by the
Boltzmann distribution,

Pn = C e−En/kT = C e−n~ω/kT , (10)

where C is some constant to be determined. Notice that the Boltzmann
distribution only depends on the dimensionless frequency,

z =
~ω
kT

. (11)
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Figure 2: Planck distribution for photons in thermal equilibrium. The Planck
distribution is exponentially suppressed in the high-frequency z � 1 regime
in sharp contrast to the dashed line predicted by the classical theory

Making use of the mathematical identity for the geometric series and the
unity constraint for the probability distribution,

∞∑
n=0

e−nz =
1

1− e−z
, → C = 1− e−z. (12)

The Boltzmann distribution for photons with wave number k in thermal
equilibrium takes the simple form,

Pn = (1− e−z) e−nz, (13)

solely depending on the dimensionless frequency z = ~ω/kT . Now we are
ready to compute the average energy of photons,

U(ω) =
∞∑
n=0

n~ω × Pn = kT ×
∞∑
n=0

nz Pn

= kT × z(1− e−z)
∞∑
n=0

n e−nz. (14)

Another mathematical identity is needed here, which can be derived by taking
derivative on the identity for the geometric series in above,

∞∑
n=0

n e−nz =
e−z

(1− e−z)2
. (15)

It is convenient to introduce the ratio between the average energy U(ω) and
the thermal energy kT ,

u(z) ≡ U

kT
=

z

ez − 1
. (16)
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Figure 3: (Left panel) Anti-coincidence apparatus with a single beam splitter
S. (Right panel) Interference apparatus for photons with two beam splitters
S1 and S2.

The classical theory (Maxwell+Boltzmann) will give rise to trivial result
u(z) = 1 (dashed line in Figure 2). The quantum theory exhibits expo-
nential suppressions in the high-frequency z � 1 regime and save us from
the ultraviolet catastrophe in the classical theory. The physics picture be-
hind the rescue is very simple: high-frequency photons carry higher energies
~ω � kT , only be found with exponentially small probabilities, and cannot
cause any singular behavior.

• wave or particle?

The name of “photon” seems to imply that light should be treated as par-
ticle. Is this true? Consider the anti-coincidence apparatus in Figure 3 –
an incident light beam passes through a symmetric beam splitter. When
detector D1 signals the presence of the photon, detector D2 remains silent.
On the other hand, when detector D2 signals, detector D1 remains silent.
Therefore, even though the trains of signals in each detector are random in
nature, they show perfect anti-correlation, which can be explained naturally
in particle perspective.

But, the story hasn’t ended yet. Suppose now we use extra mirrors to
bring the two light beams back together as shown in Figure 3. The initial
setup makes the lengths of the paths Γu and Γd the same so that no geometric
phase shift arises. Note that reflection upon mirror gives rise to a phase shift
π and the relative phase shift between transmitted and reflected beams is a
symmetric beam splitter is π/2. For convenience, we assign 0 phase shift for
the transmission and π/2 for the reflection through the beam splitter.
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Figure 4: The accumulated counts on the detectors show interference fringes
as in the double-slit experiment for light waves.

The signal of D1 contains two parts: the Γu beam includes transmission
through beam splitter S1, reflection by the upper mirror, reflection through
beam splitter S2, while the Γd beam includes reflection through beam splitter
S1, reflection by the lower mirror, transmission through beam splitter S2. The
phases accumulated through these optical processes are

φ(Γu) = 0 + π + π/2, φ(Γd) = π/2 + π + 0. (17)

The phase difference is zero. If there is interference, we expect it to be con-
structive. This is indeed true as shown in Figure 4. By moving the position
of the upper mirror slightly, the geometric phase shift appears and the inter-
ference fringes emerge, as those observed in the double-slit experiment! You
can entertain yourself to analyze the interference effect observed in detector
D2. Can you explain the difference observed in detectors D1 and D2?

After full digestion of the above experimental results, we are forced to
accept an exotic notion: photons are photons – quantum in nature, neither
particles nor waves in any classical sense.


