科目:材料熱力學

節次: 6

題號: 252

頁

共 2 頁之第 |

1. The van der Walls equation of state is

$$(P + \frac{a}{V^2})(V - b) = RT$$
, where a, b, R are constant.

When you solve the van der Waals equation at a given temperature T_{Λ} , you obtain a P-V curve shown in Figure 1.

- (a) How can you modify this curve to remove the portion of CDE that shows no physical significance? (5%)
- (b) Let PA be the pressure under which liquid and vapor are in equilibrium at

$$T_{A}$$
, show that $P_{A} = \frac{1}{V_{F} - V_{B}} \left[RT_{A} \ln \frac{V_{F} - b}{V_{B} - b} + a \left(\frac{1}{V_{F}} - \frac{1}{V_{B}} \right) \right]$ (15%)

Figure 1

- One mole of a monatomic ideal gas undergoes a reversible expansion at constant pressure during which the entropy of the gas increases by 14.41 J/K and the gas absorbs 6236 joules of heat. Note the constant-volume heat capacity of the gas is 1.5R, where R is the gas constant = 8.314 J/(mole K)
 - (a) Calculate the initial and final temperatures of the gas. (10%)
 - (b) Calculate the work done by the gas during this expansion. (10%)
- 3. Assume Cu and Ni form an ideal solid solution at 727°C, calculate the equilibrium composition of a Cu-Ni alloy (in wt%) capable of existing in equilibrium with Cu₂O and NiO at 727°C from the following data:

At 727°C
$$\Delta G^0_{Cu_2O}=-18230cal/mol$$
, $\Delta G^0_{NiO}=-30150cal/mol$, and atomic

weights of Cu and Ni are 63.54 and 58.7, respectively.

The gas constant R = 1.987 cal/(mole K) (20%)

題號: 252

國立臺灣大學101學年度碩士班招生考試試題

科目:材料熱力學

節次: 6

題號: 252

4. Figure 2 shows an A-B binary phase diagram. The solubility of B in α and β phase at T_1 is $N_B^*(\alpha)$ and $N_B^*(\beta)$, respectively. Assume both α and β phases are dilute solutions; thereby, the solute obeys the Henry's law and the solvent obeys the Raoult's law. Find the Henrian activity coefficient of B. (20%)

Figure 2

- 5. True or false. Reason or prove your answer. (20%)
 - (a) The sign of (ΔS_{system} + ΔS_{surrounding}) for the mixing of two different ideal gases in an adiabatic enclosure is positive.
 - (b) Trouton's rule (the molar entropy of boiling of a liquid metal is 88 J/K) generally applies with better accuracy than Richards' rule (the entropy of fusion of a metal is 8.4 J/K).
 - (c) For a binary alloy, the solubility of a stable phase is generally higher than the solubility of a metastable phase.
 - (d) The compressibility factor, $Z = \frac{PV}{RT}$, of a real gas generally increases with increasing pressure.

試題隨卷繳回