(10%) 1. A piece of metal is compressed slowly and reversibly from P₁=0 atm, T₁ = 298°K to P₂ = 500atm, T = 300°K. Evaluate the change of entropy ΔS for this process in the unit of cal/°K·mole. List any assumptions you make.

> Given Cp = 6 cal/°K·mole $\alpha = 5 \times 10^{-5}$ /°K density = 9 g/cm³ atomic weight = 63 g/mole $\beta = 7 \times 10^{-7}$ /atm and 1 atm · cm³ = 0.024 cal

(10%) 2. In a wire drawing operation a metal wire is pulled rapidly through the die by a force of 150 kg. Estimate the temperature rise of the wire as it passes through the die if the finished diameter is 2.5 mm. List assumptions if any.

> Given $Cv = 6 \text{ cal/}^{\circ}\text{K-mole}$ molar volume = 6 cm^3 /mole

- (10%) 3. Evaluate the entropy change of mixing 1 mole of gas A at P = 1 atm with 2 moles of A at P = 2 atm if the mixing is carried out at constant total volume.
- (10%) 4. Consider the gas reaction
 A + 4B → 2C +3D
 at 1000 °C and P total = 1 atm.
 The volume ratio of A;B;C:D = 4:3:2:1 before reaction occurs.

八十八學年度 #### 工品研究析(象) 系 (所) 一〇 組碩上班研究生招生考試 冶金熱力學 科號 1002 共 4 頁第 2 頁 *請在試卷【答案卷】內作答

- Write down the expression for equilibrium constant at fixed pressure
 K_p in terms of partial pressure of A,i.e.p_A.(8%)
- 2) Discuss the effect of total pressure on pa. (2%)

- (10%) 5. Consider the reversible expansion process by a working substance of 1 mole of an ideal diatomic gas from state I to state II in which PI = 1 atm, PII = 2 atm, and TI = 300°K. Assume that pressure is proportional to volume during the process.
- 1) Show that $TI/TII = (VI/VII)^2$ (4%)
- 2) Evaluate Tn (3%)
- Find the work for this process in calories. (3%)

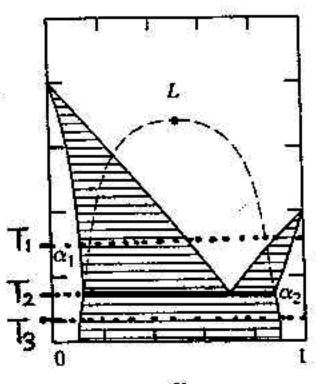
國 立 清 華 大 學 命 題 紙

- 6. Consider the case that a miscibility gap forms in a binary phase diagram.
 - (a) Draw a schematic △G_{mix} X₂ curve at a temperature below the critical temperature.
 - (b) How to define the spinodal region and the two-phase region?
 - (c) Explain the difference in diffusion behavior, when the alloy composition lies inside or outside the spinodal region. (2%, 4%, 4%)
- 7. Consider the oxidation of some metal, $M + O_2 = MO_2$. The following information is known:

Heat of formation of $MO_2(s)$, $\Delta H_f = -300 \text{ KJ/mole}$.

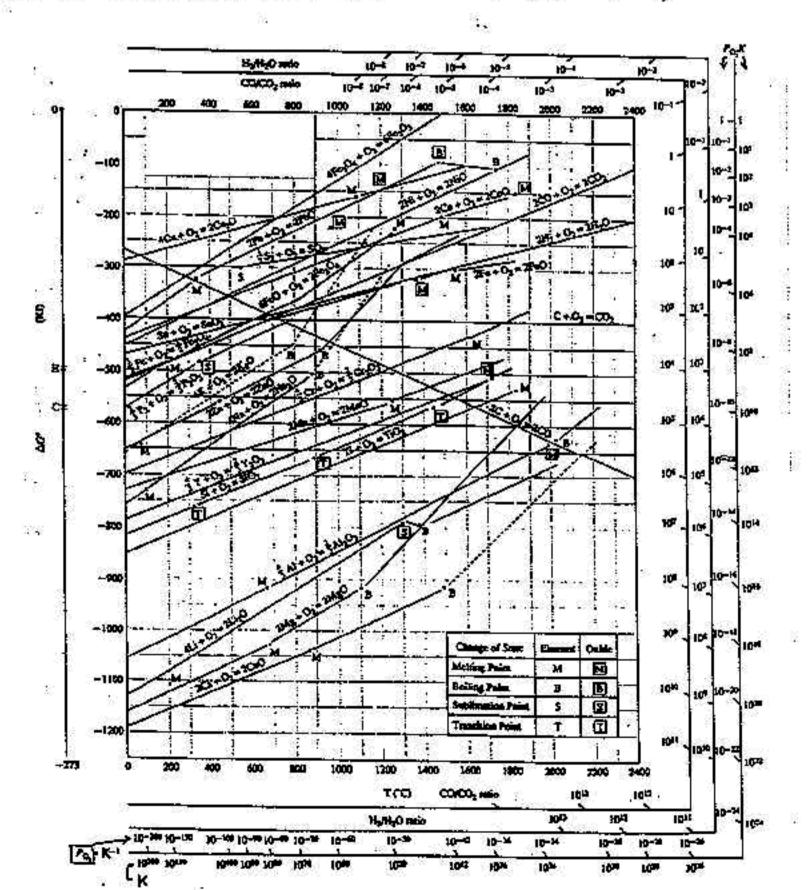
Entropies: $S_{296}^{\circ}(MO_2) = 65 \text{ J/mole-K}, S_{296}^{\circ}(O_2) = 205 \text{ J/mole-K}, S_{296}^{\circ}(M) = 40 \text{ J/mole-K},$

Melting temperature: $T_m(M) = 600 \text{ K}$, $T_m(MO_2) = 1000 \text{ K}$


Entropy of melting: $\Delta S_m(M) = 10 \text{ J/mole-K}$, $\Delta S_m(MO_2) = 20 \text{ J/mole-K}$

Boiling temperature: $T_b(M) = 1400 \text{ K}$, $T_b(MO_2) = 1800 \text{ K}$,

Entropy of vaporization: $\Delta S_b(M) = 100 \text{ J/mole-K}$, $\Delta S_b(MO_2) = 120 \text{ J/mole-K}$.


Calculate (a) the value of ΔG° at T=0 K; and (b) the <u>slope</u> of every part of the line; then draw the Ellingham line (ΔG° versus T diagram) for the oxidation reaction in the temperature range $0 \sim 1750$ K. (15%)

8. Given the phase diagram below. Sketch the ΔG - X_2 diagrams at temperatures T_1 , T_2 , and T_3 . You should use the same reference states, i.e. $G_1^{0\alpha}$, G_2^{0L} . (10%)

八十八學年度 #### エ (4 明元 (章) 系 (所) 一〇 組碩上班研究生招生考試 治 金 熱 力 學 科號 1902 共 4 頁第 4 頁 # 讀在試卷【答案卷】內作答

- Use Richardson-Ellingham chart for oxides to answer the following questions: (15%)
 - (a) What is the dissociation pressure of CoO at 1000 °C?
 - (b) What is the ratio of a H₂/H₂O gas mixture that can prevent the oxidation of Cr at 1000 °C?
 - (c) What is the composition of the H₂/H₂O gas mixture that has the same oxygen potential as the CO/CO₂ gas mixture with a ratio of 10³ at 900 °C.
 - (d) What is the oxygen potential in (c)?
 - (e) List the stability sequence of the oxides at 200 °C: CoO, Al₂O₃, ZnO, TiO₂, NiO.

