九十學年度 <u>材料科學工程系</u>(所)<u>第一類和碩士班研究生招生考試</u> 科目<u>材料熱力學 科號 1702 共 3 頁第 1 頁 *壽在試卷【答案卷】內作答</u>

- (21%) 1. Choose the number (a,b,c,d or e) of the correct answer for the following problems. Note that this is a "single choice". However, do not try to make the choice blindly. You get "+3" points when the answer is right, while "-2" points will be given to each wrong answer. Please write down the answer package on the answer sheet in the form such as
 - 1. (1) a
 - (2) c
 - (3) c (4) d
 - (5) e
 - (6) b
 - (7) c
- (1) In a "A-B" binary melt, a solute species "B" of which the self-interaction coefficient $e_B^{(B)}$ is positive displays
 - a positive deviation from Henry's Law
 - b. positive deviation from Raoult's Law
 - c. regative deviation from Henry's Law
 - d. ideal behavior e. none of above
- (2) Oxygen saturated iron has
 - a. $a_{FeO} = 1$ (pure liquid FeO standard state)
 - b. $a_{O2} = 1$ (1 atm ideal gas standard state)
 - c. $a_0 = 1$ (pure liquid Q standard state) d. $h_0 = 1$ (1 wt% H.L. solution standard state)
 - e. none of above
- (3) The solubility of nitrogen at 1 atm pressure in liquid iron increases as the temperature is increased. Dissolution of nitrogen in iron
 - a. is endothermic
 - b. is exothermic
 - c. gives an ideal solution
 - d. it depends
- (4) For a CO/CO₂ gas phase equilibrated with graphite, as the system pressure is increased at constant temperature, the mole fraction ratio N_{CO}/N_{CO₂}
 - a. decreases
 - b. increases
 - c. remains the same
 - d. it depends
- (5) The molar volume of a liquid metal is greater than that of the solid metal. An increase in pressure causes the equilibrium melting temperature to
 - a. decrease
 - b. increase
 - c. remain the same
 - d. it depends

九十學年度 <u>材料科學工程系</u>(所)<u>第一類科碩士班研究生招生考試</u> 科目<u>材料熱力學</u>科號 1702 共 3 頁第 2 頁 *請在試卷【答案卷】內作答

(6) given date for an element Z [heat capacity $C_p = 24+5\times10^{-3}$ T J/% mole] thermal expansion coefficient = 4×10^{-5} /% density = 20 g/cm^3 , molecular weight = 200 g/mole

Start with Z in the state T=298°k, p=1 atm

To what temperature would you have to heat Z at constant pressure to raise its molar enthalpy by 1 J?

- a. 286.4°k
- b. 298.04°k
- c. 541.32°k
- d. 785.44°k
- e. >1000 k
- (7) What pressure would you have to apply to Z at constant temperature to increase its molar enthalpy by 1 J
 - a. 1 atm
 - b. 1.98 atm
 - c. 273 atm
 - d. >1000 atm
 - e. 0.174 atm
- An ideal gas is compressed from the initial state (P₁,V₁) to the final state (P₂,V₂) either isothermally or adiabatically. Assume V₁ = 8 V₂
 - 1) Plot the isothermal and adiabatical process in the P-V diagram, also indicate P_i, V_1, P_2, V_2 (5%)
 - 2) For the magnitude of the work done on an ideal gas to be compressed from V₁ to V₂, which is larger?
 - Explain your answer graphically from the diagram (4%)
 - b. Justify your answer analytically by evaluating the numerical number of the work done isothermally, |W_T|, and adiabatically, |W_S|, in term of the gas constant R and temperature in the initial state T₁. (10%), (ln2 = 0.693)
 Note that your answer should be in the form of |W_S| = aRT₁,

 $|W_T| = b RT_1$, where a, and b is evaluated constant.

(10%) For a reaction system containing a gas mixture with 75% CO and 25% CO₂ at a total pressure of P_T= 4 atm. What is the temperature range when the carbon sooting occurs.

Given

C(s) +
$$1/2O_2(g) \rightarrow CO(g)$$
 $\triangle G^0 = -28,200-20.16T$
C(s) + $O_2(g) \rightarrow CO_2(g)$ $\triangle G^0 = -94,775+0.02T$
($\triangle G^0$: cal/mole)
(in3 = 1.0986)

Note that a final numerical data is required.

九十學年度 材料科學工程系(所)第一類科碩士班研究生招生考試 科目 <u>材料熟力學</u>科號 1702 共 3 頁第 3 頁 *請在試卷【答案卷】內作答 4. Calculate the value of $(\partial U/\partial P)_{\tau}$ for one mole of ideal gas at T=300 K. (10%)5. (a) Write down the van der Waals gas equation. (2%) (b) Explain the physical meanings involved in the correction terms, and how they are modified from the ideal gas equation. (8%) (c) Calculate the value of heat of evaporation, ΔH_{ν} , when the temperature approaches the critical temperature, $T \rightarrow T_{cr}$. (10%)6. The Gibbs free energy change of a binary solution is $\Delta G_m = (1+2X_1+RT)(X_1 \ell n X_1+X_2 \ell n X_2)$, where X_1 and X_2 are the mole fraction of component 1 and 2, respectively. Is this system a regular solution? Prove your answer. (10%)(a) Explain the "principle of equipartition of energy". (5%) (b) At ordinary temperatures and pressures the heat capacity (Cp) of ammonia gas is 37 J/mol-K. List all the independent components of motion that the molecule can display. Explain how do you obtain this result. (Gas constant is 8.314 J/mol-K) (5%)