國立臺灣大學96學年度碩士班招生考試試題

題號:250 科目:材料熱力學

題號:250 共 / 頁之第 /字 頁

1. please prove the following thermodynamic equation (20%)

$$dS = \frac{1}{T} \left(C_P - \frac{TV\alpha^2}{\beta} \right) dT + \frac{\alpha}{\beta} dV$$

where S=entropy V=volume C_P =heat capacity at constant pressure α =coefficient of thermal expansion β = coefficient of compressibility, T=temperature of a system

2. Please use the thermodynamic second law to prove the conditions of thermodynamic equilibrium in a unary system with two phases (α,β)

$$T^{\alpha} = T^{\beta}$$
 $P^{\alpha} = P^{\beta}$ and $\mu^{\alpha} = \mu^{\beta}$

where T= temperature P=pressure and μ =chemical potential of a system (20%)

3. Calculate the pressure required to apply to graphite at 298°K in order to cause the transformation of graphite to diamond.

Note graphite is the stable form at 298°K and 1 atm pressure.

Given data

The density of graphite at 298 K is 2.22 g/cm³

The density of diamond at 298 K is 3.515 g/cm³ (20%)

4. Copper and fold form solid solutions between 410 and 889°C, at 600°C the excess molar Gibb's free energy of formation of the solid solution is given by

$$G^{xs} \approx -28280 X_{Au} X_{Cu} J$$

Calculate the partial pressures of Cu exerted by the solid solution of X_{Cu} =0.5 at 600^{0} C

Given data
$$\ln p_{Cu}^0(atm) = -\frac{40920}{T} - 0.86 \ln T + 21.67$$
 (20%)

- 5. (a)Please write out the expressions for the partial molar free energies of an ideal solution composed of three components, A, B, and C.
 - (b) Please write out the partial molar free energies and excess free energies of mixing of a non-ideal solution composed of three components, A, B, and C using a model based on activities.

(20%)