國立臺灣大學97學年度碩士班招生考試試題

題號:260 科目:材料熱力學

題號:260

共 / 頁之第 / 頁

1. The ice of an outdoor skating rink is at the temperature of -2.0 °C. Calculate the minimum pressure (applied for example by a skate) necessary to melt the ice. (20%)

Data: At 0°C, the specific volume of water is 1.000 cm³/g and that of ice is 1.090 cm³/g; the heat of fusion is 79.7 cal/g.

Unit conversions: 1 atm = 101325 N/m^2 , 1 cal = 4.18 J

2. Show that the slope of β vs. T curve is horizontal at T=0 K, i.e. $\left(\frac{\partial \beta}{\partial T}\right)_P=0$ at T=0 K. (20%)

Where β = the coefficient of isothermal compressibility = $-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_T$, T = temperature, V = volume, P = pressure

3. Al-Zn alloys exhibit the following relation at 477°C

$$RT \ln \gamma_{Zn} = 1750(1 - X_{Zn})^2$$

Where R = 1.987 cal/mole K, and T is expressed in K. γ_{Zn} and X_{Zn} are, respectively, the activity coefficient and the molar fraction of Zn in the alloy. Calculate the activity of aluminum at 477°C in an Al-Zn alloy containing 40 atom% zinc. (20%)

4. Nickel and element A are related by a phase diagram of the type shown in Figure 1. At 727°C, element A will dissolve 4 atom% nickel and nickel will dissolve 6 atom% A. Calculate the oxygen pressure at which nickel dissolved in A to the extent of 1 atom% will just begin to oxidize to NiO. Element A is more stable than nickel and will oxidize only at higher oxygen pressures. (20%) Given: the standard free energy for the reaction

NiO(s) =
$$\frac{1}{2}$$
O₂(g, 1 atm) + Ni(s) $\triangle G^0 = 146000 \text{ J}$

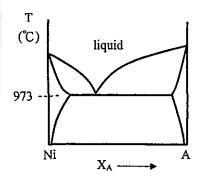


Figure 1

5. The molar free energy, G, of a regular solution composed of elements A and B can be expressed as $G = X_A G_A + X_B G_B + \Omega X_A X_B + RT(X_A \ln X_A + X_B \ln X_B)$

Where G_A and G_B are the molar free energy of pure A and B, respectively. X_A and X_B are the molar fraction of A and B in the solution. Ω is related to the difference between A-B bonds and (A-A bonds + B-B bonds).

- (1) Show that $\frac{d^2G}{dX^2} = \frac{RT}{X_A X_B} 2\Omega$, where X is X_A or X_B . (10%)
- (2) Based on the equation shown in question 5.(1), what are the conditions under which the free energy curve $(G \text{ vs. } X_B \text{ plot})$ of a regular solution exhibits a maximum? (10%)

試題隨卷繳回