材料科學與工程系 必修課程

課程名稱:	材料熱力學二
教科書名:	Thermodynamics of Materials, 5 th Ed. by D.V. Gaskell
參考書目:	1. Thermodynamics in Materials Science, by R.T. DeHoff 2. Thermodynamics of Solids, 2 nd Ed., by R.A. Swalin
建議先修課程:	1. 材料熱力學一 或 理工科系熱力學

大綱與進度 (請詳列章節細目)

第一週	Ch. 1~8 Review of fundamental Thermodynamics(I):
	1. Scope of Materials Thermodynamics, 2. Laws of Thermodynamics,
	3. Definitions of thermodynamic functions and some important
	parameters, 4. Variation of V, S, H, G as a function of T, P.
第二週	Ch. 1~8 Review of fundamental Thermodynamics(II):
	1. Calculation of S, H, G and Δ S, Δ H, Δ G for temperature changes
	at constant P, 2. Application of Gibbs-Helmholtz Eq., Clapeyron
	Eq., Clausius-Clapeyron Eq. 3. G(T, P) for a single phase substance
	and two-phases equilibrium.
第三週	Ch. 1~8 Review of fundamental Thermodynamics(III):
	1. Thermodynamics of ideal and real gases, 2. Thermodynamics of
	mixing of ideal gases: definitions of partial molar quantities,
	calculations of ΔS_{mix} , ΔU_{mix} , ΔH_{mix} , ΔG_{mix}
第四週	Ch. 9 Behavior of solutions(I):
	1. Raoult's law and Henry's law, 2. Activity of a component in
	solution, 3.Gibbs-Duhem equation, 4.Relation between G and \overline{G}_i
	of binary solution, 5. Relation between a_i , and $\Delta \overline{G}_i$, ΔG^{M} , 6. Method
	of graphical determination of $\Delta \overline{G}_i$ from $\Delta G^{ exttt{M}}$
第五週	Ch. 9 Behavior of solutions(II):
	1. Properties of ideal solution, 2. Nonideal solution,
	3. Application of Gibbs-Duhem equation (1-2).
第六週	Ch. 9 Behavior of solutions(III):
	1. Apllication of Gibbs-Duhem equation(3), 2. Regular
	solution, 3. Non-regular solution
第七週	Ch. 9 Behavior of solutions(IV):
	1. Quasi-chemical model of solutions, 2. Calculation examples.

第八週	Ch. 10 Binary phase Diagrams and ΔG^{M} (X_{B}) curves(I):
	$1.\Delta G^{M}(X_{B})$ curve of a homogeneous solution, $2.\Delta G^{M}(X_{B})$ curve of
	a regular solution, 3. Citerior for phase stability in regular
	solution.
第九週	1. Mid-term exam, 2. Ch. 10 Binary phase Diagrams and ΔG^{M} (X_{B})
	curves(II): Standard states and two-phases equilibrium.
第十週	Ch.10 Binary phase Diagrams and ΔG^{M} (X_{B}) curves(III):
	1. Isomorphous phase diagram, 2. Binary phase diagrams with liquid
	and solid exhibiting regular solution,
第十一週	Ch. 10 Binary phase Diagrams and ΔG^{M} (X_{B}) curves(IV):
	1. Eutectic phase diagrams. 2. Monotectic phase diagram,
	3. Calculation examples.
第十二週	Ch.11 Reactions involving gases(I):
	1. Reaction equilibrium in gas mixture and equilibrium constant,
	2. Effect of temperature on Kp, 3. Effect of total pressure on Kp.
第十三週	Ch.11 Reactions involving gases(II):
	1. Reaction equilibrium in SO ₂ -SO ₃ -O ₂ system, 2. To keep a constant
	po2 through gas mixture of SO2/SO3, CO/CO2, H2/H2O.
第十四週	Ch.11 Reactions involving gases(III): Calculation examples.
	Ch. 12 Reactions involving gases and pure condensed phases(I):
	1. Reaction equilibrium in a system containing pure condensed
	phases and gas phases. 2. Variation of "Standard Gibbs free
	energy change" with T.
第十五週	Ch. 12 Reactions involving gases and pure condensed phases(II):
	1. Ellingham Diagrams, 2. Stability of metals and metal-oxides.
第十六週	Ch. 12 Reactions involving gases and pure condensed phases(III):
	1. Effect of phase transition, 2. Stability of oxides in H ₂ /H ₂ O gas
	mixtures. 3. Nomographic scale of H ₂ /H ₂ O
第十七週	Ch. 12 Reactions involving gases and pure condensed phases(IV):
	1. Stability of oxides in CO/CO2 gas mixtures, . 2. Upper limit of
	(pco/pco2) at a fixed T, 3. Calculation examples.