國立臺灣大學100學年度碩士班招生考試試題

科目:通訊理論

題號: 423

1. [10分] What are the meanings of (a) the power spectral density, (b) the Gibbs phenomena, and (c) the aliasing effect?

2. $[8 \, \%]$ Determine the Fourier series of x(t)

$$x(t) = \begin{cases} 1-t & \text{for } 0 \le t < 1\\ 1+t & \text{for } -1 \le t < 0 \end{cases},$$
$$x(t) = x(t+2).$$

3. $[8 \, \hat{\pi}]$ Calculate $\sum_{n=-\infty}^{\infty} \frac{\sin^2(n)}{\pi^2 n^2}$

4. $[8 \, \%]$ Suppose that y[n] = x[3n]. If the discrete-time Fourier transforms of x[n] and y[n] are $X(e^{i\alpha})$ and $Y(e^{j\omega})$, respectively, what are the relation between $X(e^{j\omega})$ and $Y(e^{j\omega})$?

5. [8 \Re] Calculate the inverse Z transform of $X(z) = \log(1 + 2z^{-1})$

6. [8 \Re] Suppose that x(t) is a wide-sense stationary random process and y(t) is the convolution of x(t) and h(t)(h(t)) is deterministic). Prove that y(t) is also a wide-sense stationary random process.

7. Let X be a random variable with probabilities

$$P(X = k) = \begin{cases} (1-p) p^{k}, & k = 0, 1, 2, ..., l \\ \frac{(1-p) p^{k}}{1-p^{m}}, & k = l+1, l+2, ..., l+m \end{cases}$$

where p is a real number, 0 , and m is a positive integer

(a). $[4 \, \beta]$ Verify that the probability distribution given for X is valid.

(b).[8 分] Let m satisfy $p^m + p^{m+1} \le 1 < p^{m-1} + p^m$, construct a binary Huffman code for a source whose outputs are i.i.d. and distributed like X.

(c). [6 分] If $l \to \infty$ and $p \le 0.5$, what will the binary Huffman code be? What is its average codeword length?

8. Let X be a memoryless Laplacian source with marginal pdf $f_X(x) = \frac{1}{2\lambda} e^{-|x|/\lambda}, \quad \lambda > 0.$

$$f_X(x) = \frac{1}{2\lambda} e^{-|x|/\lambda}, \quad \lambda > 0$$

If we consider 1-bit scalar quantization with an absolute distortion measure $d(x,\hat{x}) = |x - \hat{x}|$, where \hat{x} is the quantized value of x,

(a). [8 分] What are the optimum input and output quantization levels?

(b).[4分] What is the average distortion?

(c). [4分] It is known that the rate-distortion function for a memoryless Laplacian source with an absolute distortion measure is

$$R(D) = \begin{cases} \log(\lambda/D), & 0 \le D \le \lambda \\ 0, & D > \lambda \end{cases}$$

With the same average distortion, up to how much average rate can you save from the quantization in (a) if vector quantization is allowed?

9. A certain source can be modeled as a stationary zero-mean Gaussian process X(t) with power-spectral density

$$S_x(f) = \begin{cases} 2, & |f| < 10 \\ 0, & \text{otherwise} \end{cases}$$

The distortion in reproducing X(t) by $\hat{X}(t)$ is $D = E \left| X(t) - \hat{X}(t) \right|^2$. This source is to be transmitted over an additive Gaussian noise channel, in which the noise power-spectral density is given by $S_n(f) = \begin{cases} 1, & |f| < 4 \\ 0, & \text{otherwise} \end{cases}$

$$S_n(f) = \begin{cases} 1, & |f| < 4 \\ 0, & \text{otherwise} \end{cases}$$

(a). [4 分] Find the rate-distortion function for the source.

(b). [4 %] If we want to reproduce X(t) with a distortion equal to 10, what transmission rate is required?

(c).[8 分] What is the required power such that the source can be transmitted via the channel with a distortion not exceeding 10? 試題隨卷繳回