編號:

213

國立成功大學一○○學年度碩士班招生考試試題

共二頁,第/頁

系所組別: 電腦與通信工程研究所乙組

考試科目: 通信系統

考試日期:0220,節次:2

※ 考生請注意:本試題 □可 □不可 使用計算機

注意: Part 1 (填充題) 不必在答案卷上填寫計算過程, 僅需將答案依題序在答案卷 「第一頁」上明確填寫,務必標明格號,可自行製作適當表格填寫。

Part 1: 填充題 (60分,每格5分)艾(二格

1. An analog random signal source has an output described by the probability density function

$$f_x(x) = \begin{cases} x/2, & 0 \le x \le 2 \\ 0, & \text{otherwise} \end{cases}.$$

This source is sampled and quantized into 4 levels using the 3 quantizing boundaries of $x_k = 0.5k$, k = 1, 2, 3. The resulting levels are encoded using a Huffman code.

- (a) The average information carried in each quantization-output is _____(1)___.
- (b) After Huffman encoder, the average bit-length for each quantization-output is ____(2)___.
- (c) The coding efficiency of the Huffman code is ____(3)__. (5%)
- 2. A signal $x(t) = 2\cos 2000\pi t$ is quantized by a uniform quantizer with dynamic range (-4, 4). The output of the quantizer is modulated by polar NRZ code and transmitted through a channel with one-sided mainlobe bandwidth of 20KHz. The quantization noise is assumed to be uniformly distributed.
 - (a) The maximum number of quantum steps of the quantizer without aliasing distortion is ____(4)___.
 - (b) The signal to quantization noise ratio (in dB) of the quantizer's output is ____(5)___.
- 3. The power spectral density of a random process x(t) is shown in Fig.1.
 - (a) Express the autocorrelation function $R_x(\tau)$ as ____(6)__.
 - (b) The dc power contained in x(t) is ____(7)__.
 - (c) The ac power contained in x(t) is ____(8)___
 - (d) To have uncorrelated samples of x(t), the possible sampling rates are ___(9)__.

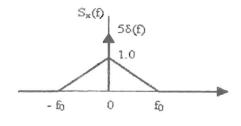


Fig. 1.

(背面仍有題目,請繼續作答)

編號:

213

國立成功大學一○○學年度碩士班招生考試試題

共二頁・第ン頁

系所組別: 電腦與通信工程研究所乙組

考試科目: 通信系統

考試日期:0220,節次:2

※ 考生請注意:本試題 □ □ 不可 使用計算機

4. A superheterodyne receiver operates in the frequency range of 700-2500KHz.

The IF frequency (f_{IF}) and the local oscillator frequency (f_{LO}) are chosen such that $f_{IF} < f_{LO}$.

It is required that the image frequencies must fall outside of the 700-2500KHz region.

- (a) The minimum required f_{IF} is ____(10)___.
- (b) The range of the corresponding f_{LO} is ____(11)___.
- 5. Through a channel of raised cosine spectrum with roll-off factor α =33.3% and bandwidth = 10MHz, the maximum transmission data rate for OQPSK modulation scheme is ____(12)___.

Part 2: (40 分)

 In an AWGN channel with a noise power spectral density of N₀/2, two equally likely messages are transmitted by

$$s_1(t) = \begin{cases} \frac{At}{T} & 0 \le t \le T \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad s_2(t) = \begin{cases} A - \frac{At}{T} & 0 \le t \le T \\ 0 & \text{otherwise} \end{cases}.$$

- (a) Determine E_b, the bit energy. (5%)
- (b) Depict the optimal receiver and determine the threshold value for the receiver. (5%)
- (c) With the optimal receiver, determine the bit-error-rate (BER) in terms of Q-function $(Q(u) = \int_{u}^{\infty} \frac{1}{2\pi} e^{-x^{1}/2} dx)$ and parameters A, T, and N₀. (5%)
- (d) Known that $E_b/N_0 = 10.5$ dB is required to get BER= 10^{-6} for coherent QPSK signal, what is the required E_b/N_0 (in dB) for this system to get BER= 10^{-6} ? (5%)
- 2. The output of a (3, 1, 2) convolutional code are determined by

$$v_i^{(1)} = u_i + u_{i-1} + u_{i-2}, \ v_i^{(2)} = u_i + u_{i-2}, \ \text{and} \ v_i^{(3)} = u_i + u_{i-1}, \ \ \text{where} \ \{u_i\} \ \text{is the input message sequence}.$$

- (a) Draw the encoder of this code. (5%)
- (b) Draw the state-transition diagram of this code. (5%)
- (c) Draw the trellis diagram for this code. (5%)
- (d) If the input message is [1 0 0 1 1 0], what is the transmitted (encoded) sequence? (5%)