題號: 417

國立臺灣大學101學年度碩士班招生考試試題

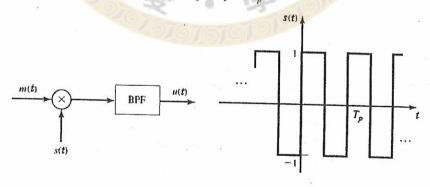
科目:通訊理論 節次: 1

型號· 417 共 2 頁之第 / 頁

1. [6 分] In what condition the aliasing effect will occur?

2. [9 分] Find the Fourier series of

$$x(t) = t$$
 for $0 < t < 5$, $x(t) = x(t+5)$

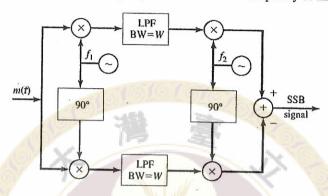

- 3. [8 分] Find the discrete-time Fourier transform of $2^{-n}(n+1)u[n]$, where u[n] is a unit step function.
- 4. (a) [8 分] Find the inverse Z transform of

$$\frac{1}{6-11z^{-1}+6z^{-2}-z^{-3}}$$

(b) [8 分] Suppose that X(z) is the Z transform of x[n]. What is the Z transform of

$$\sum_{k=-\infty}^{n} k \, x[k]$$

- 5. Suppose that both x(t) and y(t) are mutually independent white noises.
 - (a) $[6 \, \%]$ Is x(t) + y(t) also a white noise? Why?
 - (b) $[5 \, \%]$ Is $\exp(-\pi t)x(t)$ also a wide-sense stationary random process? Why?
- 6. [10 \Re] A signal u(t) is generated by multiplying a message signal m(t) with the periodic rectangular waveform shown in the following figure, and filtering the product with a bandpass filter (BPF) tuned to the reciprocal of the period T_p , with bandwidth 2W, where W is the bandwidth of the message signal, and $1/W >> T_p$. Show that the output u(t) of the BPF is a double-sideband suppressed carrier (DSB-SC) amplitude modulation (AM) signal with message m(t) and carrier frequency $1/T_p$.


7. [10 \Re] Consider the following single-sideband (SSB) modulator. Let the message signal $m(t) = \cos 2\pi f_m t$, where $f_m < W$, and W is the bandwidth of the lowpass filters (LPF).

題號: 417 國立臺灣大學101學年度碩士班招生考試試題

科目:通訊理論

節次: 1

Assume that f_1 is selected such that $|f_1 - f_m| < W$ and $f_1 + f_m > W$. Show that the output of this modulator is indeed a SSB signal, and find the carrier frequency of this SSB signal.

8. The discrete sequence

$$r_k = \sqrt{E_b c_k} + n_k, \quad k = 1, 2, ..., n$$

represents the output sequence of samples from a demodulator, where $c_k = \pm 1$ are elements of one of two possible code words, $C_1 = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}$ containing n + 1's, and $C_2 = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}$ having its first w elements as +1 and the remaining n - w elements as -1, where w is some nonnegative integer. The noise sequence $\{n_k\}$ is white Gaussian with zero mean and variance σ^2 . Assume that C_1 and C_2 occur with the same probability.

- (a).[8 分] Derive a detector that can minimize the probability of detection error for the two possible transmitted signals.
- (b). [6 分] Determine the probability of error as a function of the parameters (σ^2, E_b, w) .
- (c). [4 分] What is the value of w that minimizes the error probability?
- 9. Each sample of a Gaussian memoryless source has a variance equal to 4 and the source produces 8000 samples/sec. The source is to be transmitted via an additive white Gaussian noise channel with a bandwidth equal to 4000 Hz. It is desirable to have a distortion/sample not exceeding 1 at the destination (assume squared-error distortion).
 - (a) [6 分] What is the minimum required signal-to-noise ratio of the channel?
 - (b) [6 分] If it is further assumed that, on the same channel, a binary PSK scheme is employed with hard-decision decoding, what will be the minimum required channel signal-to-noise ratio?

試題隨卷繳回