- 1.(a) (4%) Consider the system $y(t) = -\int_{-\infty}^{\infty} x(-\tau)h(t+\tau)d\tau$ where x(t) and y(t) represent the input and output signals respectively. Suppose $x(t) = \sin c^2(t)$, $h(t) = \sin c(t)$ and $\sin cx = \sin \pi x / \pi x$.
 - (1) Is this system linear time-invariant? Justify your answer
 - (2) Find and sketch the Fourier transform of the output.

(b) (4%) Redo (a) if
$$y(t) = \int_{-\infty}^{\infty} [x(\tau) + x(\tau - 1)]h(\tau - t)d\tau$$

- (c) (5%) Redo (a) if $y(t) = \int_{-\infty}^{\infty} x(\tau)h(2t + \tau)d\tau$
- 2.(12%) Information digits a_k which can take on values 1 or -1 independently with equal probability are processed as shown below (0 < α << 1). Derive the power spectral densities of y(t), w(t) and z(t), respectively.

- 3. Let $m_1(t)$, $m_2(t)$: baseband signals with same bandwidth ${\cal W}$ and same power P_m
 - n(t): Additive White Gaussian Noise(AWGN) with two-sided power spectral density $N_a / 2$
 - ω_c carrier frequency= $2\pi f_c$, $f_c >> W$.
 - (a) (5%) Let $x(t) = m_1(t) \cos \omega_e t + m_2(t) \sin \omega_e t$. Find f_1 and f_2 (as shown in the following figure) such that y(t) has the largest SNR. What is the SNR?

- (b) (5%) Redo (a) for $x(t) = m_1(t) \cos \omega_e t + \hat{m}_1(t) \sin \omega_e t$, where $\hat{m}_1(t)$ is the Hilbert transform of $m_i(t)$.
- (c) (5%) Redo (a) for $x(t) = m_1(t) + m_2(t) \cos \omega_n t$, where $\omega_n = 4\pi W$.
- (d) (5%) Redo (a) for $x(t) = A\cos[\omega_c t + k_f \int_{-\infty}^{t} m_t(\tau) d\tau]$, where A and k_f are constants.
- (e) (5%) Draw the block diagram of a stereo FM receiver for the FM signal $\chi(t) = A\cos\{\omega_{\rm e}t + k_T\int_{-\infty}^t (m_1(\tau) + m_2(\tau)\cos\omega_{\rm e}\tau)kt\}$, where $\omega_{\rm e} = 4\pi W$. Find the ratio of demodulated SNR for $m_1(t)$ and demodulated SNR for $m_2(t)$.

國立交通大學八十六學年度碩士班入學考試試題

第 2 页, 共 2

科目: 042通訊原理 (電信工程學系甲組) ※作答前, 請先核對試題·答案卷(試卷)與准考證上之所組別與考試科目是否相符!!

- 4.(a) (4%) Draw the block diagram of an optimum DPSK receiver. Explain its operation.
 - (b) (4%) Mathematically prove that the optimum DPSK receiver can be used to detect a DPSK signal and the detection operation is not sensitive to the local carrier phase offset.
 - (c) (5%) Analyze the probability of error performance of the optimum DPSK receiver in additive white Gaussian noise with two-sided power spectral density $N_a/2$.
- Given the following binary data transmission system.

where $x(t) = \sum_{k=0}^{n} a_k \delta(t - kT)$, $a_k = \pm 1$, and a_k 's are independent and equally likely. Assume n(t)

is additive white Gaussian noise with two-sided power spectral density $|N_{\rm p}|/2$.

- (a) (4%) Describe how the Nyquist's pulse shaping criterion can be used in designing $H_r(f)$ and $H_R(f)$.
- (b) (4%) Describe how I_d and decision threshold K should be chosen.
- (c) (4%) Determine the optimum $H_r(f)$ and the optimum $H_n(f)$ such that minimum probability of error can be achieved by the system.
- 6.(10%) A binary Hamming code C has parity-check matrix

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

- (a) Find a generator matrix for C. (b) Decode the two received words $\mathbf{r}_i = (1110000)$ and $r_1 = (1111000)$.
- 7.(10%) Sketch the block diagrams for the modulator and demodulator of a coherent 8-PSK system.
- 8.(5%) Consider the six-symbol source $\{x_1, x_2, \dots, x_n\}$ whose a priori probability distribution is {0.275, 0.25, 0.2, 0.125, 0.1, 0.05}. Construct a binary Huffman code for this source.