國立交通大學九十學年度碩士班入學考試試題

科目名稱:通訊原理(042) 考試日期:90年4月22日 第 3 節

系所班別:電信工程學系 組別:甲組 第 1 頁,共 3 頁

*作答前,請先核對試題、答案卷(試卷)與准考證上之所組別與考試科目是否相符!!

1. (5%) Draw the block diagram of a superheterodyne receiver and explain its advantages.

- 2. (4%) Draw the block diagram of a phase-lock loop and show that it can be used as a demodulator of an FM signal.
- 3. (9%) A baseband message m(t) with Fourier transform M(f) and bandwidth B is sampled using a flat-top sampler. The sampled pulse width is one half of its sampling period T_s . (a) Write out the equation of sampler output. (b) Determine the Fourier transform of the sampler output. (c) What is the method to completely recover m(t) from the sampler output.
- 4. (12%) A real baseband signal m(t) has its Fourier transform M(t) being equal to a rectangular window function in a bandwidth of B.
 - (a) Plot the Fourier transform of $m(t) + j\hat{m}(t)$ where $\hat{m}(t)$ is the Hilbert transform of m(t)
 - (b) What is the Hilbert transform of $m(t)\cos 2\pi f_c t$ where $f_c >> B$
 - (c) What is the Fourier transform of $[m(t) + j\hat{m}(t)]e^{2\pi f_c t}$ where $f_c >> B$
 - (d) Plot the Fourier transform of $m(t) + 0.2m^2(t)$.
- 5. (6%) For a linear system as shown below
 - (a) what are its impulse response and transfer function?
 - (b) how do you construct a receiver to completely recover a signal m(t) from the output of the linear system when m(t) is its input?

- 6. (a) (4%) Define the Gaussian Q-function. Find Q(0).
 - (b) (4%) Derive the characteristic function of a Gaussian random variable with mean M and variance σ^2 . (hint: **characteristic function of random variable X**, $\Phi_X(v) \equiv E[e^{j\omega X}]$)
 - (c) (4%) Use the result of (b) to show that the sum of two independent Gaussian random variables is still a Gaussian random variable.
 - (d) (4%) Use the result of (c) to show that the output sample of a linear time-invariant system is a Gaussian random variable when the input to the system is a Gaussian noise.

國立交通大學九十學年度碩士班入學考試試題

科目名稱:通訊原理(042)

考試日期:90年4月22日 第 3 節

系所班別:電信工程學系 組別:甲組

*作答前,請先核對試題、答案卷(試卷)與准考證上之所組別與考試科目是否相符!!

- 7. Consider an FM signal x(t) in the presence of AWGN, assuming x(t) has an amplitude of A_c , modulating signal is $\cos(2\pi f_m t)$, peak frequency deviation is $f_d = 9f_m$, carrier frequency is f_c , and the AWGN has a two-sided power spectral density of $S(f)=N_0/2$.
 - (a) (4%) Specify the predetection bandpass filter. Derive the predetection SNR.
 - (b) (4%) Write down the equation of the received signal plus noise after passing through the predetection filter.
- (c) (4%) Derive the postdetection SNR of an FM discriminator receiver, assuming the predetection SNR is 20 dB.
- (d) (4%) Draw a phasor diagram and explain the generation mechanism of a negative noise spike (click).
- 8. A binary digital communication system employs the two signals

$$\begin{cases} s_0(t) = 0, & 0 \le t < T; \\ s_1(t) = g(t), & 0 \le t < T, \end{cases}$$

for transmitting the 0 or 1 information. This is called *on-off signaling*.

(a) (6%) The demodulator cross-correlates the received signal y(t) with f(t) and samples the output of the correlator at t = T (see the figure below).

Determine the optimal threshold that minimizes the probability of error for an AWGN channel (assuming n(t) is a zero-mean white Gaussian noise with two-sided power spectral density N_0 /2 and the two signals are equally probable).

(b) (6%) For fixed g(t) and a given constraint on transmitted power (i.e., $\int_0^T g^2(t) \le S$), what is the function f(t) that yields the lowest error probability? Justify your answer. (Hint:by Schwartz inequality)

國立交通大學九十學年度碩士班入學考試試題

考試日期:90年4月22日 第 3 節 科目名稱:通訊原理(042)

第3頁,共3頁 系所班別:電信工程學系 組別:甲組 系所班別:電信工程學系 組別:甲組 第 3 頁,共 *作答前,請先核對試題、答案卷(試卷)與准考證上之所組別與考試科目是否相符!!

(c) (4%.) Suppose the channel is a flat fading channel as shown below, where $Pr\{\alpha = 1\} = 1 - Pr\{\alpha = 0\} = p$, and n(t) is a zero-mean white Gaussian noise with two-sided power spectral density $N_0/2$. Determine the optimal threshold that minimizes the probability of error, assuming that the two signals are equally probable.

9. Assume that a data stream d(t) consists of a random sequence of +1 and -1 each of T seconds in duration. The autocorrelation function of such a sequence is:

$$R_{d}(\tau) = \begin{cases} 1 - \left| \frac{\tau}{T} \right|, & |\tau| \leq T; \\ 0, & \text{otherwise.} \end{cases}$$
 (1)

(a) (6%) Find the power spectral density of an ASK-modulated signal given by

$$s_{ASK}(t) = d(t)\cos(2\pi f_c t + \theta),$$

where θ is uniformly distributed over $[0, 2\pi)$. (Hint: Fourier transform pair is $H(f) = \int_{-\infty}^{\infty} h(t)e^{-j2\pi jt}dt$ and $h(t) = \int_{-\infty}^{\infty} H(f)e^{j2\pi jt}dt$. In addition,

$$\int_{-\infty}^{\infty} h(t) \cos(2\pi f_c t) e^{-j2\pi f t} dt = \frac{1}{2} [H(f - f_c) + H(f + f_c)].$$

(b) (6%) Compute the power spectral density of a PSK-modulated signal given by

$$s_{PSK}(t) = \sin \left[2\pi f_c t + \theta + \frac{\pi}{2} d(t) \right],$$

where θ is uniformly distributed over $[0,2\pi)$. (Hint: Expand the PSK signal into its carrier and modulation components.)

(c) (4%) By sampling the random sequence d(t) with sampling period T, a discrete-random sequence d_1, d_2, d_3, \dots of +1 and -1 is formed. Please calculate the entropy of d_i .