國立交通大學九十一學年度碩士班入學考試試題

科目名稱:通訊原理(062)

考試日期:91年4月20日 第 3 節

系所班別:電信工程學系 組別:甲組

第一頁,共二頁

*作答前,請先核對試題、答案卷(試卷)與准考證上之所組別與考試科目是否相符!!

- 1. A baseband signal x(t) with bandwidth W is sampled with sampling interval of T_s and a pulsed signal is formed as $x_p(t) = \sum_{n=-\infty}^{\infty} x(nT_s)p(t-nT_s)$, where p(t) is an arbitrary pulse.
 - (a) (6%) Find the Fourier transform of $x_n(t)$.
 - (b) (3%) Find the conditions for perfect reconstruction of x(t) from $x_p(t)$.
 - (c) (3%) Determine the required reconstruction filter.
- 2. Consider a received modulated signal $x(t) = m(t)\cos(2\pi f_c t + \theta)$ where m(t) is a wise-sense stationary baseband signal with bandwidth W and power spectral density $S_m(f)$, n(t) is an AWGN with power spectral density $S_n(f) = N_0/2$, and $\cos(2\pi f_c t + \theta)$ is the carrier signal with a random phase θ distributed uniformly in $0 \le \theta \le 2\pi$. Assume m(t), n(t), and θ are mutually independent.
 - (a) (4%) Find the autocorrelation function of x(t).
 - (b) (3%) Find the power spectral density of x(t).
 - (c) (3%) Find the channel signal to noise power ratio SNR_c .
 - (d) (3%) Draw the block diagram of a coherent receiver to detect baseband signal m(t).
 - (e) (4%) Describe a method to obtain the required local carrier used in the coherent receiver from the received signal.
 - (f) (4%) Find the autocorrelation function of the output signal of the coherent receiver.
 - (g) (3%) Find the output signal to noise power ratio SNR_o .
- 3. Consider digital transmission with a basic pulse waveform of p(t) and at a symbol rate of R_s symbol/sec.
 - (a) (4%) Under the above condition, describe the Nyquist pulse shaping criterion in words.
 - (b) (4%) In baseband transmission, find and plot the waveform of p(t) which uses the minimum bandwidth. What is the minimum bandwidth needed?
 - (c) (4%) In passband transmission, find and plot the waveform of p(t) which uses the minimum bandwidth. What is the minimum bandwidth needed?
 - (d) (4%) Plot the time domain and frequency domain responses of the family of pulses with raised cosine spectra which can be used. Please indicate in your plot different roll-off factors.
 - (e) (4%) Explain what trade-off factors are to be considered in order to choose an appropriate raised cosine roll-off factor in practice.

國立交通大學九十一學年度碩士班入學考試試題

科目名稱:通訊原理(062)

考試日期:91年4月20日 第3節

系所班別:電信工程學系

組別:甲組

第二頁,共二頁

*作答前,請先核對試題、答案卷(試卷)與准考證上之所組別與考試科目是否相符!!

4. Consider a 16-QAM signal with the following signal space constellation, where $\phi_1(t)$ and $\phi_2(t)$ are two orthonormal basis functions and AWGN with power spectral density $S_n(f) = N_0/2$ is assumed in the following.

- (a) (4%) Write down the equation of $\phi_1(t)$ and $\phi_2(t)$, assuming the 16-QAM symbol rate is R_s symbol/sec.
- (b) (4%) Write down the equation of the 16-QAM signal.
- (c) (4%) Derive the average symbol energy E_s .
- (d) (4%) Treating the 16-QAM signal as two independently modulated quadrature signals, derive the average symbol error probability P_e . Please represent P_e as a function of E_s/N_0 .
- (e) (4%) Redraw the 16-QAM signal space constellation with the Gray encoded bit pattern indicated on each signal point.
- 5. Consider the waveform x(t) of a periodic sequence 11010... (period N=5):

binary sequence 1 1 0 1 0 1 1 0 1 0 x(t) T_c T_c

Denote $R_x(\tau)$ and $S_x(f)$ as the time-averaged autocorrelation function and power spectral density of x(t), respectively.

- (a) (7%) Find and plot $R_x(\tau)$.
- (b) (5%) Find $S_x(f)$, $f \in (-\frac{1}{10T_c}, \frac{1}{10T_c})$.
- 6. Suppose two discrete memoryless sources A and B have 3 and 4 symbols, respectively. Denote the probabilities of symbols as a_1, a_2, a_3 for A and b_1, b_2, b_3, b_4 for B. Assume Huffman coding is used for these two sources. Denote V_a and V_b as the average codeword lengths in bits for A and B, respectively, without the use of an extended code; and W_a and W_b as the average codeword lengths in bits for A and B, respectively, as the order of extension goes to ∞ .
 - (a) (8%) Find and compare V_a and V_b . Is it always true that $V_b > V_a$?
 - (b) (4%) Find W_a and W_b .