1. The positive portion of the envelope of the output of an AM modulators is shown in Figure 1. The message signal is a periodic waveform having zero dc value and period = T. Determine the modulation index, the carrier power, the power in the sidebands, and the power efficiency. (15%)

通信系統

Figure 1

- The input to a filter with impulse response h(t)=10sinc(100t) is white, Gaussian signal with single-sided power spectral density (PSD) of 5 W/Hz. Determine the followings: (a) The mean of the output. (5%)
 - (b) The two-sided power spectral density (PSD) of the output. (5%)
 - (c) The power of the output. (5%)
 - (d) The autocorrelation function of the output. (5%) (e) The probability density function (pdf) of the output's amplitude at an arbitrary time t_1 . (5%)
- 3. An FM modulator has carrier $c(t) = 10\cos(2\pi f_c t)$ and the frequency-deviation constant $f_d = 50$. The input of this modulator is $m(t) = 10\cos(100\pi t)$.
 - (a) Express the output of this modulator. (5%) (b) Determine the power of the output signal. (5%)
 - (c) Determine the modulation index β and the bandwidth by the Carson's rule. (5%)
- 4. A signal can be modeled as a lowpass stationary process x(t) whose pdf at any time t_0 is $f_x(x) = \Lambda(x)$, where $\Lambda(x)$ is the triangular function. The bandwidth of this signal is 10kHz,
 - and it is desired to transmit it using a PCM system with a uniform quantizer. (a) If a 16-level quantizer is employed, what are the resulting lowest bit rate and the corresponding signal to quantization noise ratio (in dB)? (5%)
 - (b) If the available transmission rate of the channel is 120 kbps, what is the highest achievable signal to quantization noise ratio (in dB)? (5%)

(背面仍有題目.請繼續作答)

5. In an AWGN channel with a noise power spectral density of $N_0/2$, two equiprobable messages are transmitted by

$$s_1(t) = \begin{cases} \frac{At}{T} & 0 \le t \le T \\ 0 & otherwise \end{cases} \qquad s_2(t) = \begin{cases} A - \frac{At}{T} & 0 \le t \le T \\ 0 & otherwise \end{cases}$$

- (a) Determine E_b, the bit energy. (5%)
- (b) Depict the optimal receiver and determine the threshold value for the receiver. (5%)
- (c) With the optimal receiver, determine the bit-error-rate (BER) in terms of Q-function $(Q(u) = \int_{u}^{\infty} \frac{1}{2\pi} e^{-x^2/2} dx)$ and parameters A, T, and N_0 . (5%)
- (d) Knowing that $E_b/N_0 = 9.6dB$ is required to get BER= 10^{-5} for coherent BPSK signal, what is the required E_b/N_0 (in dB) for this system to get BER= 10^{-5} ? (5%)
- 6. The output of a (3, 1, 2) convolutional code are determined by $\mathbf{v}_i^{(1)} = \mathbf{u}_i + \mathbf{u}_{i-1}$, $\mathbf{v}_i^{(2)} = \mathbf{u}_i + \mathbf{u}_{i-2}$, and $\mathbf{v}_i^{(3)} = \mathbf{u}_i + \mathbf{u}_{i-1} + \mathbf{u}_{i-2}$, where $\{\mathbf{u}_i\}$ is the input information sequence.
 - (a) Draw the encoder of this code. (5%)
 - (b) If the input information sequence is [1 1 1 0 1] where the left bit is the first bit, what is the output sequence of the encoder? (5%)
 - (c) If the received sequence at the decoder is (110,100,100,010,110,010), what is the decoded information sequence? (5%)