图 五 义 迪 人 字 30 字 干 及 例 士 坂 杏 畝 八 子 畝 赵

科目:通訊原理(2042)

考試日期:95年3月11日 第2節

系所班別:電信工程學系 組別:電信所甲組 第 / 頁,共 2 頁

**作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!

1. (6%) Can the function below be autocorrelation function of a wide-sense stationary (WSS) random

process? Justify your answer.

(b)

(c)

2.(a) (6%) Prove that $S_r(f) = H(f)H(-f)S_x(f)$ if $Y(t) = \int_{-\infty}^{\infty} h(\tau)X(t-\tau)d\tau$, where $S_x(f)$ and $S_r(f)$ are respectively the power spectral densities (PSDs) of the real-valued WSS signals X(t) and Y(t), and H(t) is the Fourier transform of the filter impulse response $h(\tau)$.

- (b) (4%) Show that the relation in (a) can be reduced to $S_{\gamma}(f) = |H(f)|^2 S_{\chi}(f)$, if $h(\tau)$ is real.
- (c) (4%) Use (b) to prove that the PSD of a real-valued WSS process is always non-negative.
- 3. In the figure below, $\{a_k\}$ are unit impulses with amplitude ± 1 , whereas G(f), H(f) and C(f) are transfer functions corresponding to the impulse responses g(t), h(t) and c(t),

respectively.

- (a) (5%) In absence of noise w(t), namely, w(t) = 0, describe the Nyquist criterion for zero-ISI in the above baseband transmission system.
- (b) (5%) Describe the model of the ideal Nyquist channel.
- (c) (5%) Consider a rectangular pulse g(t), and a known channel impulse response h(t) as:

$$g(t) = \begin{cases} 1, & 0 \le t < T_b \\ 0, & \text{otherwise} \end{cases}, \text{ and } h(\tau) = \delta(\tau) + \delta(\tau - T_b)$$

國立交通大學 95 學年度碩士班考試入學試題

科目:通訊原理(2042) 考試日期:95年3月11日 第 2 節

系所班別:電信工程學系 組別:電信所甲組 第2頁,共2頁

**作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!

where $\delta(\tau)$ is the Dirac delta function. Find the matched filter impulse response c(t) that maximizes the signal-to-noise ratio at the output of the sampler in presence of the white noise w(t).

- (d) (5%) Does c(t) in (c) satisfy the Nyquist Criterion? Justify your answer.
- 4. Consider a discrete memoryless source S with source alphabet $S = \{s_1, s_2, \dots, s_K\}$ and occurrence probabilities $\{p_1, p_2, \dots, p_K\}$.
 - (a) (10%) Denote the entropy of S as H(S). Find the values of p_1, p, \dots, p_K so that H(S) is maximized. Prove your result.
 - (b) (10%) The second-order extension of this source is another discrete memoryless source T with source alphabet $\mathbb{S}^2 = \{t_1, t_2, \dots, t_M\}$, where $M = K^2$. Denote the occurrence probabilities of T as $\{q_1, q_2, \dots, q_M\}$ and its entropy as H(T). Derive the relationship between H(S) and H(T).
- 5. Consider the (7,4) Hamming code defined by the generator polynomial $g(X) = 1 + X + X^3$.
 - (a) (4%) Find its parity-check polynomial h(X).
 - (b) (6%) If the received word is represented as $r(X) = X + X^3 + X^6$, determine
 - (i) the syndrome polynomial s(X) for this received word, and
 - (ii) the decoded message polynomial m(X).
- 6.Let $\phi_1(t) = \cos w_1 t + \cos w_2 t$, $\phi_2(t) = \cos w_1 t \cos w_2 t$, $w_1 = \frac{3\pi}{T}$, $w_2 = \frac{4\pi}{T}$ and T be the symbol duration.
 - (a) (5%) Are $\phi_1(t)$ and $\phi_2(t)$ orthogonal functions? Please verify your answer.
 - (b) (10%) If $p_1(t) = a\phi_1(t) + b\phi_2(t)$ and $p_2(t) = a\phi_1(t) b\phi_2(t)$ are orthonormal basis functions, specify (a,b) accordingly.
- 7. An FSK signal is given as:

$$s_{\theta}(t) = \sqrt{\frac{2E_b}{T}}\cos w_{\theta}t \qquad , \qquad s_{I}(t) = \sqrt{\frac{2E_b}{T}}\cos w_{I}t$$

where E_b is the bit energy, T is the bit duration and $\{\cos w_0 t, \cos w_1 t\}$ is an orthogonal basis. The received signal $x(t) = s_i(t) + w(t)$, i = 0, I, and w(t) is the added white gaussian noise with two-sided power spectral density $N_o / 2$.

- (a) (5%) Show the optimum receiver structure to detect x(t) and explain why it is optimum.
- (b). (10%) Derive the corresponding bit error probability.