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Discrete Mathematics 

Lecture 4 
Proofs:  Methods and Strategies 
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What is a Proof ? 

• A proof is a valid argument that establishes the 
truth of a theorem (as the conclusion) 

• Statements in a proof can include the axioms 
(something assumed to be true), the premises, 
and previously proved theorems 

• Rules of inference, and definitions of terms, are 
used to draw intermediate conclusions from the 
other statements, tying the steps of a proof 

• Final step is usually the conclusion of theorem 
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Related Terms 

• Lemma :        a theorem that is not very important    

– We sometimes prove a theorem by a series of lemmas 
 

• Corollary :     a theorem that can be easily established  
       from a theorem that has been proved 

 

• Conjecture :  a statement proposed to be a true  
       statement, usually based on partial 
       evidence, or intuition of an expert 
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Methods of Proving 

• A direct proof of a conditional statement  

p  q 

 first assumes that p is true, and uses axioms, 
definitions, previously proved theorems, with 
rules of inference, to show that q is also true 
 

• The above targets to show that the case where   
p is true and q is false never occurs  

– Thus, p  q is always true 
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Direct Proof (Example 1) 

• Show that  

if n is an odd integer, then n2 is odd. 
 

• Proof : 

 Assume that n is an odd integer.  This implies 
that there is some integer k such that  

 n = 2k + 1. 

 Then n2 = (2k+1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1. 

   Thus, n2 is odd. 
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Direct Proof (Example 2) 

• Show that  

    if m and n are both square numbers,  

         then m n is also a square number. 
 

• Proof : 

 Assume that m and n are both squares. This 
implies that there are integers u and v such that  

 m = u2   and   n = v2. 

 Then m n = u2 v2 = (uv)2.  Thus, m n is a square. 
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Methods of Proving 

• The proof by contraposition method makes use 
of the equivalence 

p  q        q   p 
  

• To show that the conditional statement p  q 
is true, we first assume  q  is true, and use 
axioms, definitions, proved theorems, with 
rules of inference, to show  p is also true 
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Proof by Contraposition (Example 1) 

• Show that  

if 3n + 2 is an odd integer, then n is odd. 
 

• Proof : 

 Assume that n is even.  This implies that  

   n = 2k for some integer k.   

 Then,  3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1),    
so that 3n + 2 is even.   Since the negation of 
conclusion implies the negation of hypothesis, 
the original conditional statement is true 
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Proof by Contraposition (Example 2) 

• Show that  

       if n = a b, where a and b are positive,  

       then  a    n  or  b    n  . 
 

• Proof : 

 Assume that both a and b are larger than  n .  
Thus,  a b  n  so  that  n  a b.  Since the 
negation of conclusion implies the negation of 
hypothesis, the original conditional statement 
is true 
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Methods of Proving 

• The proof by contradiction method makes use 
of the equivalence 

p         p  F0   

 where F0 is any contradiction 
  

• One way to show that the latter is as follows:  
First assume  p  is true, and then show that 
for some proposition r,  r is true and  r is true 
 

• That is, we show  p  ( r   r ) is true 
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Proof by Contradiction (Example 1) 

• Show that  

if 3n + 2 is an odd integer, then n is odd. 
 

• Proof : 

 Assume that the statement is false.  Then we 
have 3n + 2 is odd, and n is even.   

 The latter implies that n = 2k for some integer k, 
so that 3n + 2 = 3(2k) + 2 = 2(3k + 1).   

 Thus, 3n + 2 is even.  A contradiction occurs 
(where ?), so the original statement is true 
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Proof by Contradiction (Example 2) 

• Show that   

    2  is irrational. 
 

• Proof :  

 Assume on the contrary that it is rational.   

 Then it can be expressed as a / b, for some 
positive integers a and b with b  0. 

 Further, we may restrict a and b to have no 
common factor. 
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Proof by Contradiction (Example 2) 

• Proof (continued):  

 It follows that   a2 = 2b2    so that   a is even. 
 Then  a = 2c  for some integer c, so that 

(2c)2 = 2b2 . 

 It follows that   b2 = 2c2    so that   b is even. 

 A contradiction occurs (where ?), so that the 
original statement is true. 
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Methods of Proving 

• The proof by cases method makes use of the 
equivalence 

      ( p1  p2  …  pk )  q    

    ( p1  q )  ( p2  q )  …  ( pk  q ) 
 

• Sometimes, to prove p  q is true, it may be 
easy to use an equivalent disjunction p1  p2 
 …  pk  instead of p as the hypothesis 
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Proof by Cases (Example) 

• Show that  

  if an integer n is not divisible by 3, 

  then n2  = 3k + 1 for some integer k. 

• Proof : 

 “n is not divisible by 3” is equivalent to  

  “n = 3m + 1 for some integer m” or  

  “n = 3m + 2 for some integer m”. 

  

16 



Proof by Cases (Example) 
• Proof (continued): 

 If it is the first case : 

   n2 = (3m + 1)2 = 9m2 + 6m + 1  

        = 3(3m2 + 2m) + 1  =  3k + 1 for some k. 

 If it is the second case :  

   n2 = (3m + 2)2 = 9m2 + 12m + 4  

        = 3(3m2 + 4m + 1) + 1 =  3k + 1 for some k. 

 We obtain the desired conclusion in both cases, 
so the original statement is true. 
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Methods of Proving 

• When proving bi-conditional statement, we 
may make use of the equivalence 

 p  q     ( p  q )  ( q  p ) 
 

• In general, when proving several propositions 
are equivalent, we can use the equivalence 

   p1  p2  …  pk    

     ( p1  p2 )  ( p2  p3 )  …  ( pk  p1 ) 
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Proofs of Equivalence (Example) 
• Show that the following statements about the 

integer n are equivalent : 

  p :=  “n is even” 

  q :=  “n – 1 is odd” 

  r  :=  “n2  is even” 
 

• To do so, we can show the three propositions 

p  q,    q  r,     r  p   

 are all true.  Can you do so ? 
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Methods of Proving 

• A proof of the proposition of the form x P(x ) 
is called an existence proof 

• Sometimes, we can find an element s, called a 
witness, such that P(s) is true 

 This type of existence proof is constructive 

• Sometimes, we may have non-constructive 
existence proof, where we do not find the 
witness 
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Existence Proof (Examples) 

• Show that there is a positive integer that can be 
written as the sum of cubes of positive integers 
in two different ways. 

• Proof: 1729 = 13 + 123  = 93 + 103 

 

• Show that there are irrational numbers r and s 
such that rs is rational. 

• Hint:       Consider ( 2  2 ) 2  
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Common Mistakes in Proofs 

• Show that  1 = 2. 

• Proof :   Let a be a positive integer, and b = a.   
 Step    Reason 

 1. a  = b    Given 

 2. a2 = a b   Multiply by a in (1)  

 3. a2 – b2  = a b – b2      Subtract by b2 in (2) 

 4. (a – b)(a + b)  = b(a – b)  Factor in (3) 

 5. a + b = b   Divide by (a – b) in (4) 

 6. 2b = b    By (1) and (5) 

 7. 2 = 1    Divide by b in (6) 
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Common Mistakes in Proofs 

• Show that   

  if n2 is an even integer, then n is even. 

• Proof :    

 Suppose that n2 is even. 

 Then n2 = 2k for some integer k. 

 Let n = 2m for some integer m. 

 Thus, n is even. 
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Common Mistakes in Proofs 

• Show that   

  if x is real number, then x2 is positive. 

• Proof :   There are two cases.   

  Case 1:    x is positive 

  Case 2:   x is negative  

 In Case 1, x2 is positive.  

 In Case 2, x2 is also positive 

 Thus, we obtain the same conclusion in all 
cases, so that the original statement is true. 
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Proof Strategies 
 

• Adapting Existing Proof 
 

• Show that  

    3  is irrational. 
 

• Instead of searching for a proof from nowhere, 
we may recall some similar theorem, and see 
if we can slightly modify (adapt) its proof to 
obtain what we want 
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Proof Strategies 
 

• Sometimes, it may be difficult to prove a 
statement q directly 
 

• Instead, we may find a statement p with the 
property that p  q, and then prove p 

 Note:  If this can be done, by Modus Ponens, q is true 
 

• This strategy is called backward reasoning 
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Backward Reasoning (Example) 
• Show that for distinct positive real numbers x and y,  

 0.5 ( x + y )    ( x y )0.5 

• Proof:  By backward reasoning strategy, we find that 
  

 1.  0.25 ( x + y )2     x y         0.5 ( x + y )    ( x y )0.5  

 2.  ( x + y )2    4 x y                0.25 ( x + y )2     x y  

 3.   x2 + 2 x y + y2    4 x y      ( x + y )2    4 x y 

 4.   x2 – 2 x y + y2    0           x2 + 2 x y + y2    4 x y 

 5.  ( x – y )2    0                     x2 – 2 x y + y2    0  

 6.  ( x – y )2    0  is true, since x and y are distinct. 
   

 Thus, the original statement is true. 
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Interesting Examples 
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Can a checkerboard be tiled by 1  2 dominoes?  



Interesting Examples 
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What if the top left corner is removed ?  



Interesting Examples 
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What if the lower right corner is also removed ?  


