
CS 2336  
Discrete Mathematics 

Lecture 5 
Proofs:  Mathematical Induction 
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Outline 

• What is a Mathematical Induction ? 

• Strong Induction 

• Common Mistakes 
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Introduction 

• What is the formula of the sum of the first n 
positive odd integers? 
 

  1  =  1 

  1 + 3  =  4 

  1 + 3 + 5  =  9 

  1 + 3 + 5 + 7  =  16 

  1 + 3 + 5 + 7 + 9  =  25 
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Introduction 

• It is reasonable to guess that the sum is n2 

 

• To do so, we may use a method, called 
mathematical induction, to prove that the 
guess is correct 
 

• How to do that ? 
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Mathematical Induction 

• Firstly, to simplify the discussion, we define a 
propositional function P(n), where 

  

   P(n) :=  “The sum of first n positive odd  
     integers is n2” 

 

 so that our target is to show n P(n)  is true 
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Mathematical Induction 

• Next, we are going to show the following two 
statements to be true: 
 

 1.   P(1),  called basic step 

 2.   n (P(n)  P(n+1)), called inductive step, 
 where domain of n is all positive integers 
 

• If both can be shown true, then we can 
conclude that  n P(n)  is true  [why?] 
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Correctness of Mathematical Induction 
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• The correctness is based on the following 
axiom on positive integers: 

  

 Well-Ordering Property : 

 Every non-empty collection of non-negative 
integers has a smallest element 

 

• Using well-ordering property, we can prove that 
mathematical induction is correct 

 



Correctness of Mathematical Induction 
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• Proof :   

 Suppose on the contrary that the two statements 
are true, but the conclusion n P(n) is not true. 

 Then  n  P(n), so that by the well-ordering 
property, there is a smallest k with  P(k) is true. 

 This k cannot be 1 (by basic step). Then, k – 1 is 
positive, so that P(k – 1) is true (by the choice of k). 

 Thus P(k) is true (by P(k – 1) and inductive step), and a 
contradiction occurs. 



Back to the Example 

• We let 

    P(n) :=  “The sum of first n positive odd  
     integers is n2” 

 and we hope to use mathematical induction to 
show n P(n)  is true 
 

• Can we show the basic step to be true? 

• Can we show the inductive step to be true? 
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Back to the Example 

• Can we show the basic step to be true? 

 

• The basic step is P(1), which is : 
 

    P(1) :=  “The sum of first 1 positive odd  
     integers is 12” 

 

 This is obviously true. 
 

10 



Back to the Example 

• Can we show the inductive step to be true? 
 

• The inductive step is n (P(n)  P(n+1)) 
 

• To show it is true, we focus on an arbitrary 
chosen k, and see if P(k)  P(k+1) is true 

– If so, by universal generalization,  

   n (P(n)  P(n+1)) is true 
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Back to the Example 

• Suppose that P(k) is true.  That is,  
  

   P(k) :=  “The sum of first k positive odd  
     integers is k2” 

 

 This implies      1 + 3 + … + (2k – 1)  =  k2. 
 

 Then, we have  

   1 + 3 + … + (2k – 1) + (2k + 1)  =  k2 + (2k + 1) 

               =  (k + 1)2, 

  so that P(k+1) is true if P(k) is true. 
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Remark 

• Note :  When we show that the inductive step 
is true, we do not show P(k+1) is true. 

 Instead, we show the conditional statement 

 P(k)  P(k+1) is true. 

 This allows us to use P(k) as the premise, and 
gives us an easier way to show P(k+1) 

 

• Once basic step and inductive step are proven, 
by mathematical induction, n P(n) is true 
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Remark 

• Mathematical induction is a very powerful 
technique, because we show just two 
statements, but this can imply infinite number 
of cases to be correct 

 

• However, the technique does not help us find 
new theorems. In fact, we have to obtain the 
theorem (by guessing) in the first place, and 
induction is then used to formally confirm the 
theorem is correct  
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More Examples 

• Ex 1:  Show that for all positive integer n,  

n    2n 

 

• Ex 2:  Show that for all positive integer n, 

n3 – n is divisible by 3 
 

• Ex 3:  Show that for all positive integer n, 

12 + 22 + 32 + … + n2  =  n(n+1)(2n+1) / 6 
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Using a Different Basic Step 

• When we apply the induction technique, it is 
not necessary to have P(1) as the basic step 

 

• We may replace the basic step by P(k) for 
some fixed k.  If both basic step and inductive 
step are true, this will imply that 

n  k (P(n)) 
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More Examples 

• Ex 4:  Show that for all positive integer n  4,  

2n    n! 

 

• Ex 5:  Show that for all non-negative integer n, 

1 + 2 + … + 2n  =  2n+1 – 1  
 

• Ex 6:  Show that for non-negative integer n, 

7n+2 + 82n+1  is divisible by 57 
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Interesting Examples 

Snowball Fight 
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• There are 2n + 1 people   

• Each must throw to the 
nearest   

• All with distinct distance 
apart 

• Show that at least one is 
not hit by any snowball 

 



Interesting Examples 

Tiling (Again!) 
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• A big square of size 2n  2n 

• Somewhere inside, a 1  1 
small square is removed 

• Show that the remaining 
board can always be tiled by 
L-shaped dominoes :              

  

 
   each consists of three 1  1 squares 

 



Strong Induction 

• An alternative form of induction, called strong 
induction, uses a different inductive step: 
 

    n ( (P(1)  P(2)    P(n))  P(n+1) ) 
 

• The basic step is still to prove P(1) to be true 

• Again, if both the basic and inductive steps are 
true, then we can conclude that n P(n) is true  
[how?] 
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Examples 

• Ex 1:   

 Define the nth Fibonacci number, Fn , as follows:  

  F0 = 1,  F1 = 1,   

  Fn = Fn-1 + Fn-2,  when n  2 
  

 By the above recursive definition, we get the 
first few Fibonacci numbers : 

  1, 1, 2, 3, 5, 8, 13, 21, 34, 55, … 
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Examples 

• Ex 1 (continued):   

 Show that Fn can be computed by the formula 

 

     Fn  =  
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Examples 

• Ex 2:  Quicksort is a recursive algorithm for 
sorting a collection of distinct numbers : 

 1.   If there is at most 1 number to sort, done 

 2.   Else, pick any number x from the collection,        
 and use x to divide the remaining numbers 
 into two groups: 

      those smaller than x,  those larger than x. 

     Next, apply Quicksort to sort each group  

     (putting x in-between afterwards) 
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Examples 

• For instance, suppose the input collection of 
numbers contains 1, 4, 3, 10, 7, 2 

• First round, say we pick x = 3 

• Then we will form two groups S and L: 

 S = { 1, 2 }  and  L = { 4, 10, 7 } 

• After that, we apply Quicksort on each group, 
and in the end, we report 

Quicksort(S),  x,  Quicksort(L) 
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Examples 

• Ex 2 (continued): 
  

 Show that Quicksort can correctly sort any 
collection of n distinct numbers 
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Interesting Example 

Peg Solitaire 
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• There are pegs on a board 

• A peg can jump over another 
one into an adjacent empty 
square, so that the jumped-
over peg is eliminated 

• Target:   Can we eliminate all 
  but one peg ? 

 



Interesting Example 
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• Show that if we start with n  n pegs (arranged 
as a square) on a board with infinite size, and n 
is not divisible by 3, then we can eliminate all 
but one peg 
 

• Hint:  Let P(n) denote the above proposition. 

 Show that P(1) and P(2) are true, and for all n,  

 P(3n+1)  P(3n+5), P(3n+2)  P(3n+4) are true  



Common Mistakes 
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• Show that  

 P(n) = “any n cats will have the same color” 

 is true for all positive integer n. 
 

• Proof:  The basic step P(1) is obviously true.   

 Next, assume P(k) is true.  Then, when we have 
k + 1 cats, we can remove one of them, say y, so 
that by P(k), they will have the same color 



Common Mistakes 
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• Proof (continued):   

 Now, we exchange the removed cat with one of 
the other k cats : 

y 

y 



Common Mistakes 
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• Proof (continued):   

 Then, by P(k) again, y must have the same color 
as the other k – 1 cats.   

 This implies all the cats are of the same color! 
  

• What’s wrong with the proof ? 


