
CS 2336  
Discrete Mathematics 

Lecture 14 
Graphs:  Euler and Hamilton Paths 
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What is a Path ? 
  

 A path is a sequence of edges that begins at a 
vertex, and travels from vertex to vertex along 
edges of the graph. The number of edges on the 
path is called the length of the path.  

 

 

• Ex :  Consider the graph on the right. 

    w  x  y  z  x  corresponds  

    to a path of length 4 
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What is a Path ? 
  

 If a path begins and ends at the same vertex, the 
path is also called a circuit. 

 

 

• Ex :  Consider the graph on the right. 

   w  x  y  z  w  

    gives to a circuit of length 4 
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Paths and Isomorphism 

Q:  How to show that the following graphs are not    
isomorphic ? 
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A:  One contains a circuit of length 3 (a triangle),  
while the other does not 



Paths and Connected Components 
  

 An undirected graph is connected if there is a 
path between any pair of vertices.  Otherwise,    
it is disconnected. 

 

 

• Ex : 
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Connected Disconnected 



Paths and Connected Components 
  

 A connected subgraph is a connected component 
if it is not contained in any other connected 
subgraphs. 

 

• Ex : 
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1 connected 
component 
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components 



Euler Paths and Circuits 
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• The above is a map of a Prussian city called 
Königsberg during the 18th century 



Euler Paths and Circuits 
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• The Pregel River (blue part) divides the city into   
4 parts :  Two sides and two large islands 



Euler Paths and Circuits 
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• Seven bridges connect the sides with the islands 

• Can we start at some location, travel each bridge 
exactly once, and go back to the same location ? 



Euler Paths and Circuits 
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• Euler first represents the four parts and the seven 
bridges by a graph shown on the right 

  The problem will be equivalent to :   

 Find a circuit that travels each edge exactly once 

• Euler shows that there is NO such circuit 

 



Euler Paths and Circuits 
  

 Definition :  An Euler path in a graph is a path 
that contains each edge exactly once. If such a 
path is also a circuit, it is called an Euler circuit. 

 

 

• Ex : 
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Euler path Euler circuit 



Euler Paths and Circuits 
  

 Theorem :  A connected graph G has an Euler 
circuit  each vertex of G has even degree. 

 

• Proof :  [ The “only if” case ]  

 If the graph has an Euler circuit, then when we 
walk along the edges according to this circuit, 
each vertex must be entered and exited the 
same number of times.   

 Thus, the degree of each vertex must be even. 
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Euler Paths and Circuits 

• Proof :  [ The “if” case ]  

 If each vertex has an even degree, we shall use 
induction (on the number of edges) to show 
that an Euler circuit exists. 

 (Basis)  When there is one edge, it must be a 
   self-loop  An Euler circuit exists. 

 (Inductive)  We start at a vertex x, and obtain a 
path without using any edge twice, until we 
end at a vertex without any more unused edge 

to travel  This vertex must be x   (why?)  
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Euler Paths and Circuits 

• Proof :  [ The “if” case (continued)]  

 Let C denote the above circuit.   

 If we remove C from the graph, the degree of 
each vertex must still be even (why?).  Further,  
each connected component with edges must 
share some vertex u with C, and has an Euler 
circuit C’ (why?) 

  We get an Euler circuit of the original graph, 
by walking on C until vertex u, then edges on C’, 
then back to u, and the remaining edges on C 
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Euler Paths and Circuits 
• Example on obtaining an Euler circuit : 
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Step 1:  
Getting a circuit C by 

starting from a vertex x 

Step 2:  
Getting C’ for each 

remaining component 

Step 3:  
Combining C and the C’ 

of each component 



Euler Paths and Circuits 
  

 Corollary :  A connected graph G has an Euler 
path, but no Euler circuits  exactly two vertices 
of G has odd degree. 

 

• Proof :  [ The “only if” case ] The degree of the 
starting and ending vertices of the Euler path 
must be odd, and all the others must be even. 

 [ The “if” case ]  Let u and v be the vertices with 
odd degrees.  Adding an edge between u and v 
will produce an Euler circuit  Removal of this 
edge thus implies an Euler path in the graph   
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Hamilton Paths and Circuits 
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• The above is a regular dodecahedron (12-faced) 
with each vertex labeled with the name of a city 
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Hamilton Paths and Circuits 
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• Can we find a circuit (travelling along the edges) 
so that each city is visited exactly once ?  
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Hamilton Paths and Circuits 
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• The right graph is isomorphic to the dodecahedron, 
and it shows a possible way (in red) to travel 
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Hamilton Paths and Circuits 
  

 Definition :  A Hamilton path in a graph is a path 
that visits each vertex exactly once. If such a path 
is also a circuit, it is called a Hamilton circuit. 

 

 

• Ex : 
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Hamilton path Hamilton circuit 



Hamilton Paths and Circuits 

• Which of the following have a Hamilton circuit or, 
if not, a Hamilton path ? 
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Hamilton Paths and Circuits 

• Show that the n-dimensional cube Qn has a 
Hamilton circuit, whenever n  2 
 

• Ex :  
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Q2 Q3 



Hamilton Paths and Circuits 

• Unlike Euler circuit or Euler path, there is no 
efficient way to determine if a graph contains a 
Hamilton circuit or a Hamilton path 

    The best algorithm so far requires exponential 
 time in the worst case 

 

• However, it is shown that when the degree of the 
vertices are sufficiently large, the graph will 
always contain a Hamilton circuit 

   We shall discuss two theorems in this form 
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Hamilton Paths and Circuits 

• Before we give the two theorems, we show an 
interesting theorem by Bondy and Chvátal (1976) 

   The two theorems will then become  
 corollaries of Bondy-Chvátal theorem 

• Let G be a graph with n vertices 
 

 Definition : The Hamilton closure of G is a simple 
graph obtained by recursively adding an edge 
between two vertices u and v, whenever 

 deg(u) + deg(v)    n 
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Hamilton Paths and Circuits 

• Ex : 

 

 

 

• Ex : 
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G Hamilton closure 

G Hamilton closure 



Hamilton Paths and Circuits 

• Ex : 
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G 

Hamilton closure 



Hamilton Paths and Circuits 
  

 

 Theorem [Bondy and Chvátal (1976)] :   

 A graph G contains a Hamilton circuit         
its Hamilton closure contains a Hamilton circuit 

 

• The “only if” case is trivial 

• For the “if” case, we can prove it by contradiction 

• However, we shall give the proof a bit later, as we 
are now ready to talk about the two corollaries 
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Hamilton Paths and Circuits 
• Let G be a simple graph with n  3 vertices 
 

  Corollary [Dirac (1952)] :   

 If the degree of each vertex in G is at least n/2, 
then G contains a Hamilton circuit 

 

 Corollary [Ore (1960)] : 

 If for any pair of non-adjacent vertices u and v,  

deg(u) + deg(v)    n,  

 then G contains a Hamilton circuit 
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Hamilton Paths and Circuits 
• Proof of Dirac’s and Ore’s Theorems : 

  It is easy to verify that  

     (i)  if the degree of each vertex is at least n/2,  or 

     (ii) if for any pair of non-adjacent vertices u and v,  

deg(u) + deg(v)    n,  

  G’s Hamilton closure is a complete graph Kn 

  When n  3,  Kn has a Hamilton circuit 

  Bondy-Chvátal implies that there will be a 
 Hamilton circuit in G 
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Hamilton Paths and Circuits 
• Next, we shall give the proof of the “if case” of    

Bondy-Chvátal’s Theorem  

• Proof  (“if case”): 

 Suppose on the contrary that 

 (i)  G does not have a Hamilton circuit, but 

 (ii) G’s Hamilton closure has a Hamilton circuit. 
 

 Then, consider the sequence of graphs obtained 
by adding one edge each time when we produce 
the Hamilton closure from G 
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Hamilton Paths and Circuits 
• Proof  (“if case” continued): 
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Hamilton Paths and Circuits 
• Proof  (“if case” continued): 

 Let G’ be the first graph in the sequence that 
contains a Hamilton circuit   

 Let { u, v } be the edge added to produce G’ 
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Hamilton Paths and Circuits 
• Proof  (“if case” continued): 

 Now, we show that the graph before G’ must also 
contain a Hamilton circuit, which immediately will 
cause a contradiction. 

 

 Consider the graph before adding { u, v } to G’. 

 It must contain a Hamilton path from u to v (why?)
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… 
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Hamilton Paths and Circuits 
• Proof  (“if case” continued): 

 Also, since we are connecting u and v in G’, 

 deg(u) + deg(v)    n 

 Consider all the nodes connected by u, and we 
mark their ‘left’ neighbors in red 
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Hamilton Paths and Circuits 
• Proof  (“if case” continued): 

 Since  

 (i)   v does not connect to u nor itself, and  

 (ii)  deg(u) + deg(v)    n 

  v must connect to some red node (why?)  
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… 
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Hamilton Paths and Circuits 
• Proof  (“if case” continued): 

  We get a Hamilton circuit, even without 
 connecting u and v ! 

 

 

 

 

  This contradicts with the choice of G’, and the 
 theorem is thus correct 
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