
CS 2336
Discrete Mathematics

Lecture 17
Trees: Optimal Prefix Code

1

Outline

• Text Encoding Problem

• Prefix Code

• Optimal Prefix Code

2

Encoding to Reduce Storage

• In ASCII, each English character is represented in
the same number of bits (8 bits)

• This is called fixed-length encoding

  If a text contains n characters, it takes 8n bits
 in total to store the text in ASCII

• However, if our target is to reduce the storage,
some better schemes can be designed

  This is what the tools, such as zip, 7zip, gzip,
 are targeting

3

Encoding to Reduce Storage

• The reason why better schemes exist is as follows:

 In real-life English texts, characters do not appear
with the same frequency

• If we can make a trade-off, so that

 1. frequent characters are encoded in fewer bits

 2. infrequent characters are encoded in more bits

 then we can reduce the total storage!

• This is called a variable-length encoding

4

Example

• Suppose we have a 100K char file, with characters
A, B, C, D, E only

– A occurs 45K times, others each 11K times

• Using fixed-length :

 Each character in 3 bits ; Total = 300K

• Using variable-length :

A  0, B  100, C  101, D  110, E  111

 Total = 45K  1 + 55K  3 = 210K (30% savings!)

5

Example

• Thinking a step ahead, we may consider the
following “better” scheme :

A  0, B  1, C  00, D  01, E  010

• This scheme requires less storage, because each
character is encoded in fewer bits

• What’s wrong with this encoding ?

6

Prefix Code

A  0, B  1, C  00, D  01, E  010

• Suppose the encoded text is : 0101

• We cannot tell if the original is

ABAB or ABD or DAB or DD or EB

• The problem comes from

one codeword is a prefix of another

7

Prefix Code

• To avoid the problem, we generally want that each
codeword is NOT a prefix of another

• Such an encoding scheme is called a prefix code,
or prefix-free code

• For a text encoded by a prefix code, we can easily
decode it in the following way :

010100001000101000101000…

8

Scan from left to right to extract the first code

1

1

Recursively decode the remaining part 2

2

Prefix Code Tree

• Naturally, a prefix code scheme
corresponds to a prefix code tree

• The tree is a rooted, with

 1. each edge is labeled by a bit ;

 2. each leaf  a character ;

 3. labels on root-to-leaf path 
 codeword for the character

• E.g., A  0, B  100, C  101,
 D  110, E  111

9

0

A

1

0 1

1 1 0 0

B C D E

Optimal Prefix Code

 Problem : Given the frequencies of each character,
design the optimal prefix code whose encoded text
requires the least storage

• Equivalently, we want to find a prefix code tree
that corresponds to an optimal prefix code

 What do we know about the tree ?

10

Optimal Prefix Code

 Observation 1 : In an optimal prefix code tree,
each internal node must have two children

11

0 1

0 1

1 1 0 0

B C D E

1

A

This cannot be an
optimal prefix code tree

Optimal Prefix Code

 Observation 2 : There is an optimal prefix code
tree, such that the leaves corresponding to the
two least frequent characters are siblings, and
the leaves are farthest from the root.

• Proof : Consider an optimal prefix code tree.

 Let y and z be the least frequent characters ;

 Let x be a character whose leaf is farthest from the
root (its sibling must be a leaf for some char x’)

12

Optimal Prefix Code

• Then, we can obtain a desired tree, as follows :

13

1 0

x x’

z y

optimal prefix code tree

1 0

y z

x’ x

as good as optimal

farthest
from root

Optimal Prefix Code

• Let y and z be the two least frequent characters

 Let T be an optimal tree such that y and z are
sibling leaves and farthest from the root

• Form a new text as follows : Replace each y and z
by a common character c in the original text

 Observation 3: If we merge x, y, and their parent
into a leaf in T, and correspond this leaf to c, we
get an optimal prefix code tree for the new text

14

Optimal Prefix Code

• Graphically, the observation says :

15

1 0

y z

a

optimal prefix code tree
for original text

a

merge x, y
and parent

c

optimal prefix code tree
for new text

Optimal Prefix Code

• Based on the previous observations, we get a way
(discovered by David Huffman in 1952) to obtain
an optimal prefix code :

 1. Find the least frequent characters x and y

 2. Form two leaves for x and y, and join them
 with a common parent p

 3. Replace x and y by a common character c

 4. Recursively find the optimal prefix code tree
 for the new text (and replace the leaf for c with p, x, y)

16

Example

• Suppose the relative frequencies are as follows :

A : 40, B : 20, C : 15, D : 50, E : 25

B C

35

B C

35 E

60

A D

90

A D

90

B C

35 E

60

1 2

3

4
150

17

