國立交通大學九十一學年度碩士班入學考試試題

科目名稱:流體力學(172)

考試日期:91年4月20日 第2節

系所班別:土木工程學系 組別:丙組一般生

第 / 頁,共 / 頁

*作答前,請先核對試題、答案卷(試卷)與准考證上之所組別與考試科目是否相符!!

1. Consider an unsteady, one-dimensional velocity field: $\vec{v}(x,t) = t(1+\beta x)\hat{i}$, where β is a constant.

- (a) [5%] Is the fluid incompressible or compressible?
- (b) [5%] If the density of the fluid ρ is uniform but unsteady, find the density such that the flow conserves mass. Assume that the density $\rho = \rho_0$ is a constant at t = 0.
- (c) [5%] Following a Lagrangian fluid particle moving in the flow field, what is the change rate of the density?
- (d) [5%] For the fluid particle locating at x = 0 initially, find an expression for the position of the particle as a function of time.
- (e) [5%] What is the acceleration of a fluid particle moving in the velocity field?
- (f) [5%] Write down the differential equation that governs the momentum conservation of the flow field.
- (g) [5%] What is the pressure gradient (dp/dx) of the flow field, if the dynamic viscosity of the fluid μ is a constant?
- 2. [15%] The wind shear stress acting on the surface of a lake τ is assumed to be a function of the wind speed U, the density ρ and the kinematical viscosity ν of the air, and the characteristic height of the water-surface roughness d. Use dimensional analysis with U, ρ and ν as the repeating parameters to find the non-dimensional groups. Discuss your result.
- 3. [30%] Consider the laminar flow of an incompressible fluid past a flat plate located at y = 0. The boundary layer velocity profile is approximated as $u = Uy/\delta$ for $0 \le y \le \delta$ and u = U for $y > \delta$, where U is the velocity outside the boundary layer, δ is the boundary layer thickness, and y is the vertical distance from the plate. Determine the shear stress by using the momentum integral equation.
- 4. [20%] Water on the horizontal apron of the 30-m-wide spillway has a depth of 0.2 m and a velocity of 6 m/s. Determine the depth after the jump and the power dissipated within the jump.