
1. (10 points)

For the flow over a cylinder as shown in the figures (a) and (b), answer the following questions:

- (i) Which figure, (a) or (b), shows the most likely streamline if the flow is inviscid?
- (ii) In (i), is there any drag force on the cylinder? Why?
- (iii) In figure (a), why there is a point of separation?

2. (10 points)

- (i) What are the units of dynamic viscosity in SI system and Metric system (g, cm, sec) ?
- (ii) Refer to the figure, if the velocity profile between infinite parallel plates having a

unit of Pa. What are the directions of these stresses. (Let dynamic viscosity M=0.01 poise)

upper plate

is nowing to the right lower plate in fixed.

3. (10 points)

Answer the following questions:

- If the velocity vector of the fluid is V, write the vector form of vorticity of the fluid.
- (ii) What is the vector form of physical angular velocity of the fluid?
- (iii) If the cartesian components of the velocity are u, v and w, what are the cartesian components of the angular velocity?

4. (10 points)

Consider a container of liquid which has a constant acceleration a upward and to the right as shown in the figure, (i) derive pressure in the liquid as a function of position in cartesian coordinate, x and y, assuming that the ambient pressure above the free surface is P_0 (ii) Calculate the slope of the free surface with respect to the horizontal plane, θ .

fluid density: P
fluid pressure: P

free surface and ay

) x

5. (10 points)

Consider the steady flow of a fluid through a pipe bend as shown in the following figure. Determine the force of the fluid on the pipe between sections A and B.

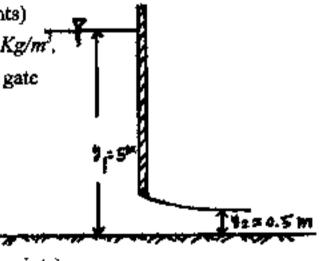
assume that the fluid body force is negligible and derive the x and y components of the fluid on the pipe, R, and R,

rea: A1 fluid pressur: P.

density: P1

average velocity: Vi

glund pressur: Y1
a verage velocity: V2


- 6. Please compare the differences of following items for laminar and turbulent (9 points) (fully developed) flows in a circular pipe:
 - a. range of the Reynolds number
 - b. velocity profile (briefly describe it, equation is not required)
 - c. relationship between head loss and velocity
- 7. A Lr scale model of a hydraulic structure is to be tested in open channel (9 points) flow to verify their performance. Note that $Lr = l_x/l_p$ (scale ratio between model and prototype). What are the followings:
 - a. velocity ratio
 - b. time ratio
 - c. force ratio
- 8. When neglecting the dilatation, the *Navier-Stokes* (*N-S*) equation expressed (6 points) in the vector form is:

$$\rho \vec{g} - \nabla p + \mu \nabla^2 \vec{q} = \rho \frac{d\vec{q}}{dt}$$

- is there a name for the reduced equation?
- b. What assumptions should be made to simplify the N-S equation to the Bernoulli equation?
- 9. Flow of water under a sluice gate is indicated in the figure. (14 points)

 Assume that the viscous force is negligible, the water density is $1.0 \ Kg/m^3$,

 and $g = 9.8 \ KN/m^3$. What is the total force (KN/m) acting on the gate per unit width?

10. The velocity potential for a steady incompressible flow is given (12 points)

by
$$\phi = A(x^2 + 2y - z^2)$$

- a. Prove that the irrotational condition is satisfied.
- b. Find the equation for the velocity vector
- c. Find the equation of the stream function in y = 0 plane
- d. Prove that the continuity equation is satisfied