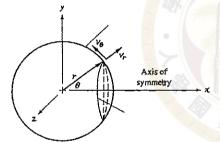
國立臺灣大學98學年度碩士班招生考試試題


題號:255 科目:流體力學(A)

趣號:25

共 | 頁之第全頁

1. (25 %) Consider a steady axial laminar flow in the annular space between two concentric cylinders with inner radius b and outer radius a. Assume there is no slip at the surface and the velocity u = u(r) only.

- (a) State the governing equation and boundary conditions. (5%)
- (b) Based on (a), find the solution of u (6%).
- (c) Based on (b), sketch the velocity profile (4%),
- (d) Calculate the volume flow rate Q (5%).
- (e) Determine the position r' at which the velocity attains its maximum (5%).
- 2. (25 %) Consider an axisymmetric potential flow about the x axis, as shown in the figure.
- (a) State the continuity equation for incompressible flow in terms of the velocity components v_r and v_θ (4%).
- (b) Express v_r and v_θ in terms of the stream function ψ (4%).
- (c) Find ψ for the combination of a uniform stream U_{∞} in the x direction and a point doublet with strength $U_{\infty}a^3/2$ at the origin (6%).
- (d) Based on (c), sketch the streamlines (3%).
- (e) Based on (c), find the velocity components v_r and v_θ (6%).
- (f) Calculate the maximum velocity (2%).

3. (30%) Consider a small solid sphere of diameter D is released in a large liquid tank. At very low Reynolds number (Re_D < 1), the drag coefficient of a sphere could be estimated as $C_D = 24/\text{Re}_D$, where C_D is drag coefficient and Re_D is Reynolds number based on sphere diameter. Please draw a free body diagram of the sphere (5%) and estimate all the forces exerted on the sphere and write down the unsteady force equation for the sphere in the falling process(10%). Please find the terminal velocity (acceleration = 0) of the sphere, if D =20 μ m, the specific gravity of the sphere is 5.5, the dynamic viscosity and density of liquid are $10^{-3}\text{N} \cdot \text{sec/m}^2$ and 10^{-3}kg/m^3 , respectively. (7%). Could you design a viscometer based on the above-mentioned phenomenon, draw a sketch of your design and what you need to measure? (8%).

- 4. (20%, 5% each) Read the following statements carefully and answer them with 'True' or 'False'. If your answer is 'False', please briefly explain your reasons.
- (a) By doubling the circular pipe diameter for laminar flow of an incompressible fluid, the flow rate will increase four times under the same pressure drop condition.
- (b) The higher the flow speed of a laminar circular pipe flow is, the larger are the friction factor (or friction coefficient).
- (c) For a compressible flow, we may mount a converging duct after a converging sonic nozzle in order to increase the maximum flow speed.
- (d) The water has higher value of kinematic viscosity than air at 1 atm and 25°C.