93學年度國立成功大學研究所招生考試	工程科學學系 丁組	流體力學	2 h 8%	共	頁
4	戊		試題	第1	頁

- 1. Explain the following terms: (30%)
- (1) Fluid
- (2) incompressible
- (3) irrotational

- (4) stream line
- (7) Bernoulli equation
- (8) equation of continuity
- (9) d'Alembert's paradox
- (10) separation point

(5) Newtonian fluid (6) creeping motion

- Short answer (20%)
- (1) What kind of body can be neutrally buoyant and remain at rest at any point where it is immersed in the fluid?
- (2) What's the relationship between stream function and streamlines?
- (3) What is the physical meaning of Reynolds number?
- (4) What is boundary layer theory?
- (5) There are two different kinds of fluid. How do you judge which one has the higher viscosity?
- Consider a fluid flow inside a tube (fully-developed).
- (1) What's the definition or physical meaning of "fully-developed" in the tube flow? (5%)
- (2) Derive the velocity distribution of the fully-developed flow. (15%)

$$\text{Hint:} \quad \rho \left(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2} \right]$$

- 4. Consider a steady uniform flow passing over a flat plate, as shown in the following figure.
- (1) Derive the (von Kármán's) integral-momentum equation for this problem by using the control volume shown in the following figure. (9%) Hint: U_∞ = constant.
- (2) Derive the expression of δ/x , solving the integral equation by assuming (14%)

$$\frac{u}{U_{\infty}} = a + b \frac{y}{\delta}$$

5. Prove that the equipotential lines are orthogonal to the streamlines. (7%)