6 學年度 机新州考試(流体力学) 研究所碩士班入學

- Answer as indicated:
- (a) What is the mathematical and physical difference between Bernoulli's equation and the energy equation? (3%)
- (b) What is the physical difference between thermodynamic pressure and mechanical pressure of fluid in motion? (3%)
- (c) If the streamlines and the pathlines are identical, then it can be concluded that the flow is steady. True or False, Why? (3%)
- (d) What is the best geometric shape for minimum drag in (1) incompressible flow, (2) subsonic flow, (3) supersonic flow, and (4) hypersonic flow? (4%)
- 2. An impinging jet issuing from a stationary nozzle encounters a vane with turning angle $\,\theta$. The vane moves horizontally at constant speed U and the absolute speed of the jet is V.
 - (a) Using a reference coordinate fixed with the jet to obtain an expression for the resultant force and power that the vane can produce. (8%)
 - (b) Show that the power is maximum when $U = \frac{V}{3}$. (4%)

Consider a laminar flow past a wedge of half-angle θ as shown in the sketch.

- (a) What is the free stream velocity profile U(x)? Use the inviscid flow theory. (2%)
- (b) Is the pressure gradient advrese or favorable? (1%)
- (c) List the basic assumptions of the boundary-layer approximation and write down the boundary-layer equation with appropriate boundary conditions for the problem. (5%)
- (d) For θ = 0, calculate the ratio of the displacement thickness to boundary thickness by assuming the velocity profile within the boundary layer as u = Asin(By) + C.(7%)
- 4_ Consider flow of an ideal gas at a supersonic speed. A normal shock occurs. Starting with an appropriate control volume and assumptions, develop expressions for (p_2/p_1) and (T_2/T_1) in terms of M_1 , M_2 , and γ (the ratio of specific heat) (10%)

一度 考試(流体力 研究所碩士班入學 annel flow in 國立成功大學 試題)

5. Consider a uniform open-channel flow in a prismatic channel at steady conditions. The flow is fully turbulent and is assumed to be one-dimensional i.e., the velocity is a constant at any point in a given cross section. The sketch given below illustrates the situation with the x direction along the channel bottom, the z direction upward and normal to the channel bottom. The y direction is the z direction upward and normal to the channel bottom. The y direction is into the paper. Let τ_w be the wall shear stress, A be the cross-sectional area of the flow, p* the wetted perimeter. The friction factor in flow is f/4. It is further assumed that the pressure gradient is negligible along the flow direction. Determine the velocity V. (5%)

- 6. Consider the flow for which the potential is given by $\phi = \frac{2ar^{3/2}}{3} \cos \frac{3}{2}\theta$ a > 0

 - (a) Find the velocity components V and V_θ.
 (b) Find the stream function for this flow.
 (c) Is there a stagnation point in this flow? If so, where is it?
 (d) Assuming that the body in question is determined by V_θ=0 except θ=0, sketch the body and some stream with arrows indicating the flow direction.
 (a) What is the pressure distribution along the body surface? (15%)
 - (e) What is the pressure distribution along the body surface?(15%)
- 7. Water flows under a sluice gate on a horizontal bed at the inlet to a flume. Above the gate, the water level is D, and the velocity is negligible. At the vena contracta below the gate, the flow streamlines are straight and the depth is D₂. Hydrostatic pressure distribution and uniform flow may be assumed at each section; friction is negligible.

 (1) Determine the flow velocity downstream from the gate.

 (2) Determine the horizontal force on the sluice gate. (15%)

8. A rigid-body ratation of the fluid in a tank about the z axis without any translation, as shown in the sketch. It is assumed that the container has been rotating long enough at constant Ω for the fluid to have attained rigid-body retation. Determine the pressure distribution in the fluid and the maximum and minimum heights of the free surface. (15%)

