國立清華大學102學年度碩士班考試入學試題

系所班組別:核子工程與科學研究所 甲組(工程組) 考試科目(代碼):流體力學(2704)

- 1. 解釋名詞 (30%)
- Largrangian Method
- Eulerian Method
- Streamline, Pathline, Streakline
- (a) What is the Bernoulli equation?
 - (b) 應用 Bernoulli equation 的假設為何?
 - (c)以 pressure 的觀點解釋 Bernoulli equation 內每一項
 - (d)以 head 的觀點解釋 Bernoulli equation 內每一項
- Fully developed and developing
- Major loss and Minor loss
- boundary layer thickness and momentum thickness
- 2. 利用 dimensional analysis 將 Two dimensional N-S Eqs (如 Eq. (1))簡 化成 Boundary layer Eqs (如 Eq. (2))並找出 boundary layer thickness 與 Re 的關係 (20%)

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

$$u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + v \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)$$

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = v \frac{\partial^2 u}{\partial y^2}$$

$$(2)$$

共_3__頁,第__1_頁

系所班組別:核子工程與科學研究所 甲組(工程組)

考試科目(代碼):流體力學(2704)

3. (20 %)

Water enters a tank of diameter D_T steadily at a mass flow rate of \dot{m}_{in} . An orifice at the bottom with diameter D_o allows water to escape. If the tank is initially empty, (a) determine the maximum height h_{max} that the water will reach in the tank; (b) obtain a relation for water height z as a function of time t.

Assumptions: a. The orifice has a smooth entrance

b. All of the frictional losses are negligible

c. $D_T >> D_o$

系所班組別:核子工程與科學研究所 甲組(工程組)

考試科目(代碼):流體力學(2704)

4. 30 %

Develop the differential equation for conservation of linear momentum (i.e. Navier-Stokes equation) in cylindrical coordinates by applying the control volume method to an infinitesimal control volume of dimensions $rd\theta, dr, dz$. (σ is the normal stress and τ is the shear stress)

[Hint]
$$\sigma_{rr} = -p + 2\mu \frac{\partial v_r}{\partial r}$$

$$\sigma_{\theta\theta} = -p + 2\mu \left(\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_r}{r}\right)$$

$$\sigma_{zz} = -p + 2\mu \frac{\partial v_z}{\partial z}$$

$$\tau_{r\theta} = \tau_{\theta r} = \mu \left(r \frac{\partial}{\partial r} \left(\frac{v_{\theta}}{r}\right) + \frac{1}{r} \frac{\partial v_r}{\partial \theta}\right)$$

$$\tau_{\theta z} = \tau_{z\theta} = \mu \left(\frac{\partial v_{\theta}}{\partial z} + \frac{1}{r} \frac{\partial v_z}{\partial \theta}\right)$$

$$\tau_{rz} = \tau_{zr} = \mu \left(\frac{\partial v_r}{\partial z} + \frac{\partial v_z}{\partial r}\right)$$