
EECS 2060 Discrete Mathematics Spring 2021

Solution to Homework Assignment No. 2

1. (a) Since (a, b) ∈ R1 but (b, a) 6∈ R1, R1 is not symmetric. Therefore, R1 is not an
equivalence relation.

(b) We can check that the following conditions hold:

1. Reflexive: (x, x) ∈ R2,∀x ∈ A.

2. Symmetric: (x, y) ∈ R2 ⇒ (y, x) ∈ R2,∀x, y ∈ A.

3. Transitive: (x, y) ∈ R2 and (y, z) ∈ R2 ⇒ (x, z) ∈ R2,∀x, y, z ∈ A.

Therefore, R2 is an equivalence relation, and the corresponding equivalence classes
are {a, b, c} and {d}.

(c) We can check that the following conditions hold:

1. Reflexive: (x, x) ∈ R3,∀x ∈ A.

2. Symmetric: (x, y) ∈ R3 ⇒ (y, x) ∈ R3,∀x, y ∈ A.

3. Transitive: (x, y) ∈ R3 and (y, z) ∈ R3 ⇒ (x, z) ∈ R3,∀x, y, z ∈ A.

Therefore, R3 is an equivalence relation, and the corresponding equivalence classes
are {a}, {b}, {c}, and {d}.

2. (a) We can check that the following conditions hold:

1. Reflexive: (x, x) ∈ R1,∀x ∈ A.

2. Antisymmetric: (x, y) ∈ R1 and (y, x) ∈ R1 ⇒ x = y,∀x, y ∈ A.

3. Transitive: (x, y) ∈ R1 and (y, z) ∈ R1 ⇒ (x, z) ∈ R1,∀x, y, z ∈ A.

Therefore, R1 is a partial order, and the corresponding Hasse diagram is shown
in Fig. 1.

(b) Since (a, b) ∈ R2 and (b, a) ∈ R2 but a 6= b, R2 is not antisymmetric. Therefore,
R2 is not a partial order.

(c) We can check that the following conditions hold:

1. Reflexive: (x, x) ∈ R3,∀x ∈ A.

2. Antisymmetric: (x, y) ∈ R3 and (y, x) ∈ R3 ⇒ x = y,∀x, y ∈ A.

3. Transitive: (x, y) ∈ R3 and (y, z) ∈ R3 ⇒ (x, z) ∈ R3,∀x, y, z ∈ A.

Therefore, R3 is a partial order, and the corresponding Hasse diagram is shown
in Fig. 2.

3. (a) Since |A×A| = 4 · 4 = 16, the number of different relations on A is 216 = 65536.

(b) Recall that there is a one-to-one correspondence between the set of equivalence
relations on A and the set of partitions of A. Equivalently, we compute the
number of partitions of A. There are totally 15 different partitions of A:
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Figure 1: Hasse diagram for R1.

Figure 2: Hasse diagram for R3.

• 1 partition of this type: {b1}, {b2}, {b3}, {b4}
•
(
4
1

)
= 4 partitions of this type: {b1}, {b2, b3, b4}

•
(
4
2

)
/2 = 3 partitions of this type: {b1, b2}, {b3, b4}

•
(
4
2

)
= 6 partitions of this type: {b1, b2}, {b3}, {b4}

• 1 partition of this type: {b1, b2, b3, b4}
where bi ∈ A, for i = 1, 2, 3, 4, and bi’s are distinct. Therefore, there are 15
equivalence relations on A.

4. The corresponding Hasse diagram is shown in Fig. 3.

(a) a, b, c.

(b) None.

(c) e.

(d) a, b, c, d.

(e) d.

5. (a) The number of ways is
(

8
2,2,2,2

)
= 8!

2!2!2!2!
= 2520.

(b) Substituting the second equation into the first, we obtain

x1 + x3 + x5 = 15− 5 = 10

x2 + x4 + x6 = 5.

The number of nonnegative integer solutions to x1+x3+x5 = 10 is
(
3+10−1

10

)
= 66.

The number of nonnegative integer solutions to x2 + x4 + x6 = 5 is
(
3+5−1

5

)
=

21. Therefore, the total number of nonnegative integer solutions to the pair of
equations is 66 · 21 = 1386.
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Figure 3: Hasse diagram for Problem 4.

6. (a) By Binomial Theorem, we have

(1 + x)n =
n∑

k=0

(
n

k

)
xk =

(
n

0

)
+

(
n

1

)
x+

(
n

2

)
x2 + · · ·+

(
n

n

)
xn.

Taking derivative on both sides, we obtain

n(1 + x)n−1 =

(
n

1

)
+ 2

(
n

2

)
x+ · · ·+ n

(
n

n

)
xn−1

=
n∑

k=1

(
n

k

)
kxk−1.

(b) From (a), let x = 1 and we have

n2n−1 =
n∑

k=1

(
n

k

)
k · 1k−1

=
n∑

k=1

k

(
n

k

)
.

(c) Consider that there are n people. We want to select a committee and select a
leader of the committee. One way is to choose the leader first and then select the
remaining committee members from the rest n − 1 people. There are n ways to
choose the leader and 2n−1 ways for the remaining members. So there are totally
n2n−1 different ways, which is the result on the left-hand side of the equality.
Another way is to select all the members of the committee first and then choose
the leader from the selected members. Let there be k members in the committee,
for 1 ≤ k ≤ n. Given k, there are

(
n
k

)
ways to choose the committee members

and k ways for the leader. Hence the total number of ways is
∑n

k=1 k
(
n
k

)
, which

is exactly the result on the right-hand side of the equality.

3



7. Let n =
∏t

i=1 p
ei
i , where pi’s are distinct primes and ei ≥ 1, i = 1, 2, . . . , t. Then

φ(n) = φ

(
t∏

i=1

peii

)

=

∣∣∣∣∣
{
m : 1 ≤ m ≤ n, gcd

(
m,

t∏
i=1

peii

)
= 1

}∣∣∣∣∣
= |{m : 1 ≤ m ≤ n, pi - m, for i = 1, 2, . . . , t}| .

Let Ai = {m : 1 ≤ m ≤ n, pi | m}, for i = 1, 2, . . . , t. We have

φ(n) =

∣∣∣∣∣
t⋂

i=1

Ai

∣∣∣∣∣
= n−

∣∣∣∣∣
t⋃

i=1

Ai

∣∣∣∣∣
= n−

(
t∑

i=1

|Ai| −
∑

1≤i<j≤t

|Ai ∩ Aj|+
∑

1≤i<j<k≤t

|Ai ∩ Aj ∩ Ak| − · · ·+ (−1)t−1

∣∣∣∣∣
t⋂

i=1

Ai

∣∣∣∣∣
)

= n−

(
t∑

i=1

n

pi
−

∑
1≤i<j≤t

n

pipj
+

∑
1≤i<j<k≤t

n

pipjpk
− · · ·+ (−1)t−1 n

p1p2 · · · pt

)

= n

(
1−

t∑
i=1

1

pi
+

∑
1≤i<j≤t

1

pipj
−

∑
1≤i<j<k≤t

1

pipjpk
+ · · ·+ (−1)t

1

p1p2 · · · pt

)

= n
t∏

i=1

(
1− 1

pi

)
.

8. Note that |Sn| = n!. By the principle of inclusion and exclusion, we obtain

dn = |A1 ∩ A2 ∩ · · · ∩ An|
= |Sn| − |A1 ∪ A2 ∪ · · · ∪ An|
= n!− α1 + α2 + · · ·+ (−1)nαn

where α1 = |A1| + |A2| + · · · + |An|, α2 = |A1 ∩ A2| + |A1 ∩ A3| + · · · + |An−1 ∩ An|,
. . . , αn = |A1 ∩ A2 ∩ · · · ∩ An|. We have

|Ai| = (n− 1)!, for 1 ≤ i ≤ n
|Ai ∩ Aj| = (n− 2)!, for 1 ≤ i < j ≤ n

...
|Ai1 ∩ Ai2 ∩ · · · ∩ Air | = (n− r)!, for 1 ≤ i1 < i2 < · · · < ir ≤ n, 1 ≤ r ≤ n.
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Therefore,

dn = n!−
n∑

i=1

(
n

i

)
(−1)i−1(n− i)!

= n!−
n∑

i=1

n!

i!
(−1)i−1

= n!
n∑

i=0

(−1)i

i!
.
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