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Solution to Homework Assignment No. 2

Since (a,b) € Ry but (b,a) ¢ Ry, R; is not symmetric. Therefore, Ry is not an
equivalence relation.

We can check that the following conditions hold:

1. Reflexive: (z,x) € Ry, Vo € A.

2. Symmetric: (z,y) € Ry = (y,x) € Ry, Va,y € A.

3. Transitive: (z,y) € Ry and (y,2) € Ry = (x,2) € Ry, Va,y,z € A.
Therefore, R is an equivalence relation, and the corresponding equivalence classes
are {a,b,c} and {d}.

We can check that the following conditions hold:

1. Reflexive: (z,x) € Rs, Vo € A.

2. Symmetric: (x,y) € R3 = (y,z) € R3,Vx,y € A.

3. Transitive: (z,y) € R3 and (y,2) € Ry = (x,2) € R3,Vx,y,z € A.
Therefore, R3 is an equivalence relation, and the corresponding equivalence classes
are {a}, {b}, {c}, and {d}.

We can check that the following conditions hold:

1. Reflexive: (z,x) € Ry, Vo € A.

2. Antisymmetric: (x,y) € Ry and (y,z) € Ry = x = y,Va,y € A.

3. Transitive: (z,y) € Ry and (y,2) € Ry = (x,2) € Ry,Vx,y,z € A.
Therefore, R; is a partial order, and the corresponding Hasse diagram is shown
in Fig. 1.

Since (a,b) € Ry and (b,a) € Ry but a # b, Ry is not antisymmetric. Therefore,
Rs is not a partial order.
We can check that the following conditions hold:

1. Reflexive: (z,z) € R3,Vz € A.

2. Antisymmetric: (z,y) € Rs and (y,z) € Ry = = = y,Vr,y € A.

3. Transitive: (x,y) € R3 and (y,2) € R3 = (z,2) € R3,Vz,y,2z € A.
Therefore, R3 is a partial order, and the corresponding Hasse diagram is shown
in Fig. 2.

Since |A x A| =4 -4 = 16, the number of different relations on A is 2% = 65536.

Recall that there is a one-to-one correspondence between the set of equivalence
relations on A and the set of partitions of A. Equivalently, we compute the
number of partitions of A. There are totally 15 different partitions of A:
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Figure 1: Hasse diagram for R;.
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Figure 2: Hasse diagram for Rj.

partition of this type: {b1}, {ba}, {bs}, {04}
1) = 4 partitions of this type: {b1}, {bs, b3, ba}
5)/2 = 3 partitions of this type: {b1,bs}, {b3, bs}
e (;) = 6 partitions of this type: {b1, b2}, {bs}, {bs}
e 1 partition of this type: {by,ba, b3, bs}
where b; € A, for © = 1,2,3,4, and b;’s are distinct. Therefore, there are 15
equivalence relations on A.
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4. The corresponding Hasse diagram is shown in Fig. 3.

(a) a,b,c.
(b) None.
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(b) Substituting the second equation into the first, we obtain

£L’1+Z’3+£L’5215—5:10
To + T4 + x5 = 5.

34+10—-1 — 66.

The number of nonnegative integer solutions to zs + x4 + g = 5 is (3+§_1) =

21. Therefore, the total number of nonnegative integer solutions to the pair of
equations is 66 - 21 = 1386.

The number of nonnegative integer solutions to x; + 3+ x5 = 10 is (
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Figure 3: Hasse diagram for Problem 4.

By Binomial Theorem, we have

(142)" = kz: <Z>xk - (g) + (T)m—i— (Z)a?2+---+ (Z)x"

Taking derivative on both sides, we obtain

n(l+2)"! = (”f) +2<Z)“"'+”(Z)x"_l

From (a), let x = 1 and we have

non—1 — Z (Z)k k-1

Consider that there are n people. We want to select a committee and select a
leader of the committee. One way is to choose the leader first and then select the
remaining committee members from the rest n — 1 people. There are n ways to
choose the leader and 2"~! ways for the remaining members. So there are totally
n2"~! different ways, which is the result on the left-hand side of the equality.
Another way is to select all the members of the committee first and then choose
the leader from the selected members. Let there be £ members in the committee,
for 1 < k < n. Given k, there are (Z) ways to choose the committee members
and k ways for the leader. Hence the total number of ways is > ) _, k:(g), which
is exactly the result on the right-hand side of the equality.
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7. Let n = szlp?, where p;’s are distinct primes and ¢; > 1,7 =1,2,...,t. Then

t
=6 (Hp?)
i=1
t
= Hm: 1<m <mn,ged (m,prl> :1}
i=1

={m:1<m<n,pitm, fori=12 ... t}.

Let A;={m:1<m<mn,p; | m}, fori=1,2...,t. We have

¢(n) =

i=1
t
=n— (Z‘Ai’ = > JANAl+ ) JANANA] = (1) ﬂAi)
j= 1<i<j<t 1<i<j<k<t i=1
n n
= n — _ _...+<_1)t_1—
(ZZI Di 1<zZ<]<t Dipj 1<i<jz'<k§t PiP;iPk P1p2 - - - Pt
1 1
= 1— _|_..._|_(_1)t—
< Z i 1<§<t pip; 1<Z.<JZ<,€§ PiPjPk bip2-- Pt
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8. Note that |S,| = n!. By the principle of inclusion and exclusion, we obtain

dn:|A_1ﬂA_2r]...ﬂA_n|
=[S, —[ALUAU---UA,|
:n!—oq—i-ozg—i-”--l-(—l)”ozn

where a; = |Aq| 4+ |Aag] + -+ |Au], a2 = [A1 N Ay + AL N As| + -+ -+ |41 N Ayl
a, =[A1NAN---NA,|. We have

|A;l =(n—1) for1 <i<n
AiNA)l=mn-2)Lfor1<i<j<n

A, NA, N NA |=n—r)for 1 <ig <ig< - <i,<n, 1<r<n.



Therefore,




