COMPLEX ANALYSIS

ASSIGNMENT III; DUE APRIL 26, 2021.

Here U denotes the open unit disc in \mathbb{C} .

- 21. Evaluate $\int_0^\infty \frac{x^{\lambda}}{a^2+x^2} dx$, $-1 < \lambda < 1$, a > 0.
- 22. Evaluate $\int_0^\infty \frac{\ln x}{x^{\lambda}(1+x)} dx$, $0 < \lambda < 1$.
- 23. Let f be a holomorphic function defined on the open unit disc such that $|f(\frac{1}{n})| \leq \frac{1}{3^n}$ for $n \geq 2$. Prove that f is identically zero.
- 24. Let $p(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n$ be a polynomial with all a_j real and $0 \le a_0 \le a_1 \le \cdots \le a_n$. Show that all of the zeros of p(z) lie inside the closed unit disc.
- 25. Let $p(z) = 1 + 2z 18z^4$. Show that all the zeros of p lie within the open disc $D = (0; \frac{2}{3})$.
- 26. Show that the only univalent entire functions are the affine functions f(z) = az + b, $a, b \in \mathbb{C}, a \neq 0$.
- 27. Suppose g is holomorphic in the punctured plane $z \neq 0$ and satisfies $|g(z)| \leq \sqrt{|z|} + \frac{1}{\sqrt{|z|}}$ for all $z \neq 0$. Prove g is a constant.
 - 28. Let $\{m_1, m_2, \dots, m_k\}$ be a set of positive integers and

$$R(z) = \frac{1}{(z^{m_1} - 1)(z^{m_2} - 1) \cdots (z^{m_k} - 1)}.$$

Find the coefficient c_{-k} in the Laurent expansion for R(z) about the point z=1.

- 29. Let $g \in \mathcal{O}(\Omega)$, where $\Omega = U \setminus \{0\}$. Suppose that $\iint_{\Omega} |g(z)|^2 dx dy < \infty$. Show that 0 is a removable singularity of g.
- 30. Show that the converse of Darboux-Picard's theorem is false: Find a simple closed curve \mathcal{C} and a function f which is holomorphic on and inside \mathcal{C} such that f is univalent inside \mathcal{C} but not on \mathcal{C} .