COMPLEX ANALYSIS

Assignment IV; Due May 3, 2021.

Here U denotes the open unit disc in \mathbb{C} .

- 31. Suppose that g is entire and g(z) is real if and only if z is real. Show that g can have at most one zero.
- 32. Suppose $f \in \mathcal{O}(U)$. Prove that there is a sequence $\{z_n\}$ in U such that $|z_n| \to 1$ and $\{f(z_n)\}$ is bounded.
- 33. Let $f \in \mathcal{O}(\bar{U})$. If $|f(z)| \le 1$ for |z| = 1 and $f(0) = \frac{1}{2}$. Show that $|f(z)| \le \frac{3|z|+1}{2}$ for all $z \in U$.
- 34. Let $f \in \mathcal{O}(\bar{U})$, and |f(z)| < 1 for |z| = 1. How many fixed points must f have in the disc?
- 35. Let K be a compact set in \mathbb{C} , and let g(z) = az + 1, $a \in \mathbb{C}$. Suppose that the origin lies in the convex hull of K (the smallest closed convex set containing K). Show that $\sup_{z \in K} |g(z)| \ge 1$. Note that 0 may not lie in K.
 - 36. Find holomorphic function f(z) whose real part is $x^3 3x^2y 3xy^2 + y^3$.
- 37. Write out Poisson's integral formula on a disc $D(a;R) = \{z \mid |z-a| < R\}$, if u is continuous on $\bar{D}(a;R)$ and harmonic in D(a;R).
- 38. Let Ω be a region, and let $f_n \in \mathcal{O}(\Omega)$, $n \in \mathbb{N}$. Suppose u_n is the real part of f_n and $\{u_n\}$ converges uniformly on compact subsets of Ω and $\{f_n(z)\}$ converges for at least one point in Ω . Prove that $\{f_n\}$ converges uniformly on compact subsets of Ω .
- 39. If u is real-valued and harmonic on a connected open set, and if u^2 is also harmonic, prove that u is a constant function.
- 40. Show that the Laplace operator $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$, when written in polar coordinates, takes the form

 $\triangle = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}.$