
Combinational Logic

Hsi-Pin Ma ⾺席彬

https://eeclass.nthu.edu.tw/course/3452

Department of Electrical Engineering

National Tsing Hua University

EECS1010 Logic Design

https://eeclass.nthu.edu.tw/course/3452

Hsi-Pin Ma

Outline
• Combinational Circuits
• Analysis of Combinational Circuits
• Design Procedure
• Binary Adder-Subtractor
• Decimal Adder
• Binary Multiplier
• Magnitude Comparator
• Decoder
• Encoders
• Arbiters
• Multiplexers
• Shifters

2

Hsi-Pin Ma

Combinational Circuits

3

Hsi-Pin Ma

Logic Circuits for the Digital System

•Combinational circuits
– Logic circuits whose outputs at any time are determined

directly and only from the present input combination.

•Sequential circuits
– Circuits that employ memory elements + (combinational)

logic gates

– Outputs are determined from the present input

combination as well as the state of the memory cells.

4

Hsi-Pin Ma

Combinational Logic Circuits

•Memoryless: o=f(i)
– Used for control, arithmetic, and data steering.

5

Hsi-Pin Ma

Closure

•Combinational logic
circuits are closed under
acyclic composition

•Cyclic composition of two
combinational logic
circuits
– The feedback variable can

remember the history of the
circuits

– Sequential logic circuit

6

Hsi-Pin Ma

Analysis of Combinational Circuits

7

Hsi-Pin Ma

Analysis Procedure

•Analysis for an available logic diagram
– Make sure the given circuit is combinational

•No feedback path or memory element
– Derive the corresponding Boolean functions
– Derive the corresponding truth table
– Verify and analyze the design

•Logic simulation (waveforms)

– Explain the function

8

Hsi-Pin Ma

Derivation of Boolean Functions (1/2)

•Label all gate outputs that are functions of the
input variables only. Determine the functions.

•Label all gate outputs that are functions of the
input variables and previously labeled gate
outputs, and find the functions.

•Repeat previous step until all the primary
outputs are obtained.

9

Hsi-Pin Ma

•Example
– List all functions

•F2=AB+AC+BC

•T1=A+B+C

•T2=ABC

•T3=F2’T1

•F1=T3+T2

– F1=T3+T2=F2’T1+ABC=(AB+AC+BC)’(A+B+C)+ABC
=A’BC’+A’B’C+AB’C’+ABC

– Full adder (F1: sum, F2: carry)

Derivation of Boolean Functions (2/2)

10

Hsi-Pin Ma

Derivation of Truth Table (1/2)

•For n input variables
– List all the 2n input combinations from 0 to 2n-1.

– Partition the circuit into small single-output blocks and

label the output of each block.

– Obtain the truth table of the blocks depending on the

input variables only.

– Proceed to obtain the truth tables for other blocks that

depend on previously defined truth tables.

11

Hsi-Pin Ma

Derivation of Truth Tables (2/2)

•Example

12

Hsi-Pin Ma

Design Procedure

13

Hsi-Pin Ma

Design Procedure
•Specification: From the specifications, determine the

inputs, outputs, and their symbols.
•Formulation: Derive the truth table (functions) from

the relationship between the inputs and outputs
•Optimization: Derive the simplified Boolean functions

for each output function. Draw a logic diagram or
provide a netlist for the resulting circuits using AND,
OR, and inverters.

•Technology Mapping: Transform the logic diagram or
netlist to a new diagram or netlist using the available
implementation technology.

•Verification: Verify the design.
14

1

2

3

4

Hsi-Pin Ma

A BCD-to-Excess-3 Code Converter (1/3)

•Spec
– input (ABCD), output (wxyz) (MSB to LSB)

– ABCD: 0000 ~ 1001 (0~9)

•Formulation
– wxyz = ABCD+0011

15

don’t care

Input BCD Output Excess-3 Code

1
BCD-to-Excess-3

Code Converter

A
B
C
D

w
x
y
z

2

Hsi-Pin Ma

A BCD-to-Excess-3 Code Converter (2/3)
•Optimization

16

z=D’
y=CD+C’D’
x=B’C+B’D+BC’D’
w=A+BC+BD

z=D’
y=CD+(C+D)’
x=B’(C+D)+BC’D’
w=A+B(C+D)

from K-map

reduce gate numbers

3

Hsi-Pin Ma

A BCD-to-Excess-3 Code Converter (3/3)

17

4. Draw logic diagram4

Hsi-Pin Ma

A BCD-to-Seven-Segment Display
Decoder (1/2)

•Spec
– input (ABCD), output (abcdefg) (MSB to LSB)

– ABCD: 0000 ~ 1001 (0~9)

•Formulation

18

a
b
c

d
e
f g

BCD Input Seven-Segment Decoder

A B
C

C D a b c d e f g

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 0 1 1

All other inputs 0 0 0 0 0 0 0

1

2

Hsi-Pin Ma

A BCD-to-Seven-Segment Decoder (2/2)

•Optimization
– 7x K-Map simplification

– a=A’C+A’BD+B’C’D’+A’B’C’

– b=A’B’+A’C’D’+A’CD+AB’C’

– c=A’B+A’D+B’C’D’+AB’C’

– d=A’CD’+A’B’C+B’C’D’+AB’C’+A’BC’D

– e=A’CD’+B’C’D’

– f=A’BC’+A’C’D’+A’BD’+AB’C’

– f=A’CD’+A’B’C+A’BC’+AB’C’

•Technology Mapping
19

3

4

Hsi-Pin Ma

Binary Adder-Subtractor

20

Hsi-Pin Ma

•Half adder
– Inputs: x, y

– Outputs: C (carry), S(sum)

•Full adder
– Inputs: x, y, z(carry from previous lower significant bit)

– Outputs: C(carry), S(sum)

Binary Half Adder & Full Adder (1/3)

21

S = x�y + xy� = x�y

C = xy

S = x�y�z + x�yz� + xy�z� + xyz = x�y�z

C = xy + yz + zx

1

1

2

2

3

3

Hsi-Pin Ma

Binary Half Adder & Full Adder (2/3)
•Logic diagram

22

S = x�y + xy� = x�y

C = xy

S = x�y�z + x�yz� + xy�z� + xyz = x�y�z

C = xy + yz + zx

Half Adder

Full Adder

4

Hsi-Pin Ma

Binary Half Adder & Full Adder (3/3)
•Full adder implemented with half adders

– Two half adders and one OR gate

23

S = z�(x�y)

C = z(xy� + x�y) + xy

HA

HA

Hsi-Pin Ma

AiBi

Ci+1
Ci

Si

Ripple-Carry Adder (1/4)

24

1 0 1 1 0

 1 0 1 1

 1 0 0 1

1 0 1 0 0

A
B

S

C

Si

Ci
Ci+1

Ai

Bi

eg. S=A+B, A=A3A2A1A0,B=B3B2B1B0, S=S3S2S1S0

unsigned addition

(Cn+1SnSn-1...S1)=(AnAn-1...A1)+(BnBn-1...B1)

1 The computation time of a
ripple-carry adder grows
linearly with word length n

T=O(n) due to carry chain

critical path

4-bit binary
adder

B3B2B1B0 A3A2A1A0

S3S2S1S0

C0C4

Hsi-Pin Ma

Ripple-Carry Adder (2/4)

25

AiBi

Ci+1
Ci

Si

3. Boolean Algebra and Logic Gates 3-12

Example 7

Consider the full adder as defined in the following truth table.

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

We first derive expressions for the two output functions that contain a minimum

number of operators.

Note that the carry function could be reduced to .

We can implement with NAND and NOR gates.

The gate-level implementations for the full adder are shown in Fig. 2.

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

Ai Bi Ci Ci+1 Si

5. Combinational Components 5-9

(a) Truth table for full adder

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
1
1
1

0
1
1
0
1
0
0
1

ix iy isi+1cic
00 01 11 10

0 1 23

4 5 7 6

0

1

c
i

i
x

i
y

1 1

11

(b) Map representation

00 01 11 10
0 1 23

4 5 7 6

0

1

1

1 1 1

c
i

i
x

i
y

is +O +O= ix iy ic i+1c = ix iy ic ()+Oix iy+

337 7

7 6 5 4 3 2

22445566

1 0

0011x x x x x x x x yyyyyyy

ssssssss

y

FA FA FA FA FA FA FA FA
7 6 5 4 3 2 1

0

ccccccc

outc c

(c) Full adder logic schematic

ix iy

ic

is

i+1c

FA

(e) Graphic symbol

Adder 0out
cc

(d) 8−bit adder unit

S

X Y

Figure 5: Ripple-carry adder [Gajski].

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

AiBi

Ci

AiBi

Ci

Si = Ai�Bi�Ci Ci+1 = AiBi + Ci(Ai�Bi)

1

2

3

5. Combinational Components 5-9

(a) Truth table for full adder

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
1
1
1

0
1
1
0
1
0
0
1

ix iy isi+1cic
00 01 11 10

0 1 23

4 5 7 6

0

1

c
i

i
x

i
y

1 1

11

(b) Map representation

00 01 11 10
0 1 23

4 5 7 6

0

1

1

1 1 1

c
i

i
x

i
y

is +O +O= ix iy ic i+1c = ix iy ic ()+Oix iy+

337 7

7 6 5 4 3 2

22445566

1 0

0011x x x x x x x x yyyyyyy

ssssssss

y

FA FA FA FA FA FA FA FA
7 6 5 4 3 2 1

0

ccccccc

outc c

(c) Full adder logic schematic

ix iy

ic

is

i+1c

FA

(e) Graphic symbol

Adder 0out
cc

(d) 8−bit adder unit

S

X Y

Figure 5: Ripple-carry adder [Gajski].

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

Ai Bi

Ci
Ci+1

Si

4

Hsi-Pin Ma

Ripple-Carry Adder (3/4)

26

Si = f(Ai, Bi, Ci) = Ai�Bi�Ci

Ci+1 = g(Ai, Bi, Ci) = Ai·Bi +Bi·Ci + Ci·Ai

C1 = g(A0, B0, C0)

C2 = g(A1, B1, C1)

C3 = g(A2, B2, C2)

C4 = g(A3, B3, C3)

S0 = f(A0, B0, C0)

S1 = f(A1, B1, C1)

S2 = f(A2, B2, C2)

S3 = f(A3, B3, C3)

define

Hsi-Pin Ma

Multi-bit Notation

•Multi-bit signal or a bus

•Verilog bit-select (bit-slice) or part-select
– b[7:0]

– b[7]

– b[5:3]

27

Hsi-Pin Ma

•For a full adder, define what happens to carry
– Carry-generate: Cout=1 independent of Cin

•

– Carry-propagate: Cout=Cin

•

– Carry-kill: Cout=0 independent of Cin

•

•Use the above info
–

–

Carry Lookahead Adder (1/3)

28

Gi = Ai·Bi

Pi = Ai�Bi

Ki = A�
i·B�

i

Ai Bi Gi Pi Ki

0 0 0 0 1
0 1 0 1 0
1 0 0 1 0
1 1 1 0 0

Ci+1 = AiBi + BiCi + AiCi = AiBi + (Ai + Bi)Ci = Gi + PiCi

Si = Ai�Bi�Ci = Pi�Ci

1

2

3

Hsi-Pin Ma

•Do not have to wait for Ci to compute Ci+1

–

–

–

–

•Fixed delay time for each carry (but not the
same for every gate!)

•Fanout of Gi & Pi also affect the overall delay =>
usually be limited to 4 bits

Carry Lookahead Adder (2/3)

29

Ci+1 = Gi + PiCi

Ci+2 = Gi+1 + Pi+1Ci+1 = Gi+1 + Pi+1Gi + Pi+1PiCi

Ci+3 = Gi+2 + Pi+2Ci+2 = Gi+2 + Pi+2Gi+1 + Pi+2Pi+1Gi + Pi+2Pi+1PiCi

Ci+4 = Gi+3 + Pi+3Ci+3 = Gi+3 + Pi+3Gi+2 + Pi+3Pi+2Gi+1 + Pi+3Pi+2Pi+1Gi + Pi+3Pi+2Pi+1PiCi

3

Hsi-Pin Ma

5. Combinational Components 5-11

☞ Roughly, in the worst case an -bit ripple-carry adder has gate delays, but

an -bit CLA adder has gate delays, assuming only 2-input gates.

(a) 4−bit slice of a ripple−carry adder

ci+4

x y i+3i+3

g pi+3i+3

i+3s

i+3c

x y

g p

s

c

x y

g p

s

c

x y

g p

s

c iCLA generator

i+2 i+2

i+2 i+2

i+2

i+2 i+1

i+1

i+1i+1

i+1 i+1

i

i

i i

i

p(i, i+3)g(i, i+3)

i+3c c i+2 c i+1p(i, i+3)g(i, i+3)

c i

ci+4

pi+3gi+3 gi+2 pi+2 pi+1gi+1 pigi

2.4

3.2

2.4

2.4 2.4 2.4 2.43.2 3.2 3.2

3.2

2.4 2.4

2.4

2.4

2.4

c

x y

c

s

x y

c

s

ix
iy

ic

is

i+1

i+1i+1i+2

i+2

i+2

i+1i+2

i+4

FA FA FA

x y

c

s

i+3

i+3

i+3

i+3

FA

gi ip

4.2

2.4

4.22.4

2.4

4.2

2.4

4.22.4

2.4

4.2

2.4

4.22.4

2.4 2.4

2.4

2.4

4.2

4.2

(b) 4−bit adder slice with CLA generator

(c) Logic schematic of CLA

4.2 4.2 4.2 4.2

4.24.24.24.22.4 2.4 2.4 2.4

Figure 6: CLA generator [Gajski].

Consider

again. It can be rewritten as

where

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

AiBi

Ci

Ai+1Bi+1Ai+2Bi+2Ai+3Bi+3

Carry Lookahead Adder (3/3)

30

5. Combinational Components 5-11

☞ Roughly, in the worst case an -bit ripple-carry adder has gate delays, but

an -bit CLA adder has gate delays, assuming only 2-input gates.

(a) 4−bit slice of a ripple−carry adder

ci+4

x y i+3i+3

g pi+3i+3

i+3s

i+3c

x y

g p

s

c

x y

g p

s

c

x y

g p

s

c iCLA generator

i+2 i+2

i+2 i+2

i+2

i+2 i+1

i+1

i+1i+1

i+1 i+1

i

i

i i

i

p(i, i+3)g(i, i+3)

i+3c c i+2 c i+1p(i, i+3)g(i, i+3)

c i

ci+4

pi+3gi+3 gi+2 pi+2 pi+1gi+1 pigi

2.4

3.2

2.4

2.4 2.4 2.4 2.43.2 3.2 3.2

3.2

2.4 2.4

2.4

2.4

2.4

c

x y

c

s

x y

c

s

ix
iy

ic

is

i+1

i+1i+1i+2

i+2

i+2

i+1i+2

i+4

FA FA FA

x y

c

s

i+3

i+3

i+3

i+3

FA

gi ip

4.2

2.4

4.22.4

2.4

4.2

2.4

4.22.4

2.4

4.2

2.4

4.22.4

2.4 2.4

2.4

2.4

4.2

4.2

(b) 4−bit adder slice with CLA generator

(c) Logic schematic of CLA

4.2 4.2 4.2 4.2

4.24.24.24.22.4 2.4 2.4 2.4

Figure 6: CLA generator [Gajski].

Consider

again. It can be rewritten as

where

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

CLA generator

4

4-bit binary
adder

B3B2B1B0 A3A2A1A0

S3S2S1S0

C0C4

Hsi-Pin Ma

Binary Adders/Subtractors

•Binary subtraction normally is
performed by adding the minuend to
the 2’s complement of the subtrahend.

31

M Function Comments

0 S=A+B addition
1 S=A+B’+1 subtraction

M AiBi

CiCi+1

Si

1

2 3

4

overflow detection

Hsi-Pin Ma

Decimal Adder

32

Hsi-Pin Ma

Decimal Adders (1/3)

•Addition of 2 decimal digits in BCD
– {Cout,S}=A+B+Cin

•S=S8S4S2S1, A=A8A4A2A1, B=B8B4B2B1

– A digit in BCD cannot exceed 9, add 6 (0110)
for final correction.

33

Decimal
symbol

BCD digit

0

1

2

3

4

5

6

7

8

9

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

A
B

1 0

 810

 910

1 710

 1 0 0 0 0

 1 0 0 02

 1 0 0 12

 1 0 0 0 12

 0 1 1 02

0 0 0 1 0 1 1 12

KZ binary coded results

BCD coded results

1

2 3

if >9, add 6

Hsi-Pin Ma

Decimal Adders (2/3)

34

Z8 Z4 Z2 Z1

Z8Z4 Z8Z2

2 3

Hsi-Pin Ma

Decimal Adders (3/3)

35

B8 B4 B2 B1 A8 A4 A2 A1

Cout=K+Z8Z4+Z8Z2

4

3

Cout

Cin

Hsi-Pin Ma

Binary Multiplier

36

Hsi-Pin Ma

Multiplication
•Multiplication consists of

– Generation of partial products

– Accumulation of shifted partial products

37

1210

510

6010

Multiplicand
Multiplier

Product

Partial Product

Hsi-Pin Ma

M-bit x N-bit Multiplication

38

P = (
M−1∑

j=0

yj2
j)(

N−1∑

i=0

xi2
i) =

N−1∑

i=0

M−1∑

j=0

xiyj2
i+j

Hsi-Pin Ma

2-bit x 2-bit Binary Multiplier

39

1

4

2,3

A0B0A0B1

A1B0A1B1

Hsi-Pin Ma

4-bit x 3-bit Binary Multiplier

40

 B3 B2 B1 B0

 A2 A1 A0

 A0B3 A0B2 A0B1 A0B0

 A1B3 A1B2 A1B1 A1B0

 A2B3 A2B2 A2B1 A2B0

C6 C5 C4 C3 C2 C1 C0

X

1

2,3

4

Hsi-Pin Ma

Other Arithmetic Functions

•It is convenient to design the functional blocks
by contraction
– Removal of redundancy from circuit to which input

fixing has been applied

•Functions
– Increment

– Decrement

– Multiplication by constant

– Division by constant

– Zero fill and extension

41

Hsi-Pin Ma

Design by Contraction

•Simplify the logic in a functional block to
implement a different function
– The new function must be realizable from the original

function by applying rudimentary functions to its inputs

– Contraction is treated here only for application of 0s and

1s (not for X and X’).

– After application of 0s and 1s, equations or the logic

diagram are simplified

42

Hsi-Pin Ma

Design by Contraction Example

•Contraction of a ripple carry adder to
incrementer for n=1 (Set B=001)

43

Hsi-Pin Ma

Incrementing and Decrementing

•Incrementing
– Add a fixed value to an arithmetic variable

– Fixed value is often 1, called counting up

•A+1, B+4

– Functional block is called incrementer

•Decrementing
– Subtracting a fixed value from an arithmetic variable

– Fixed value is often 1, called counting down

•A-1, B-4

– Functional block is called decrementer

44

Hsi-Pin Ma

Multiplication/Division by 2n

•Shift left (multiplication) or right (division)

45

© 2008 Pearson Education, Inc.
M. Morris Mano & Charles R. Kime
LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

4-10
B1B2B3

0

0 0 0 0

0

B0

B1B2B3

Carry
output

4-bit Adder
Sum

Carry
output 4-bit Adder

Sum

B0

C0C1C2C3C4C5C6

B1B2B3

A0 �1

A1 �0

A2 �1

B0

(a)

B0B1B2B3

C0C1

0 0

C2C3C4C5

(b)

B0B1B2B3

C0 C 1 C 2C1C2

00

C3

(c)

© 2008 Pearson Education, Inc.
M. Morris Mano & Charles R. Kime
LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

4-10
B1B2B3

0

0 0 0 0

0

B0

B1B2B3

Carry
output

4-bit Adder
Sum

Carry
output 4-bit Adder

Sum

B0

C0C1C2C3C4C5C6

B1B2B3

A0 �1

A1 �0

A2 �1

B0

(a)

B0B1B2B3

C0C1

0 0

C2C3C4C5

(b)

B0B1B2B3

C0 C 1 C 2C1C2

00

C3

(c)

shift left by 2

shift right by 2

Hsi-Pin Ma

Multiplication by a Constant

46

© 2008 Pearson Education, Inc.
M. Morris Mano & Charles R. Kime
LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

4-10
B1B2B3

0

0 0 0 0

0

B0

B1B2B3

Carry
output

4-bit Adder
Sum

Carry
output 4-bit Adder

Sum

B0

C0C1C2C3C4C5C6

B1B2B3

A0 �1

A1 �0

A2 �1

B0

(a)

B0B1B2B3

C0C1

0 0

C2C3C4C5

(b)

B0B1B2B3

C0 C 1 C 2C1C2

00

C3

(c)

Hsi-Pin Ma

Zero Fill

•Fill an m-bit operand with 0s to become an n-bit
operand with n > m.

•Filling usually is applied to the MSB end of the
operand, but can also be done on the LSB end.

•11110101 filled to 16 bits
– MSB end: 0000000011110101

– LSB end: 1111010100000000

47

{{8{0}}11110101}

{11110101{8{0}}}

Hsi-Pin Ma

Extension

•Increase in the number of bits at the MSB end of
an operand by using a complement
representation
– Copies the MSB of the operand into the new positions

– 01110101 extended to 16 bits

•0000000001110101

– 11110101 extended to 16 bits

•1111111111110101

48

{{8{a7}}a71110101}

Hsi-Pin Ma

Magnitude Comparator

49

Hsi-Pin Ma

A 4-bit Equality Comparator

•Spec
– input A(3:0), B(3:0); output E (1/0 for equal/unequal)

•Formulation
– Bypass the truth table approach due to its size (8 inputs)

– By algorithm to build a regular circuit

•A=A3A2A1A0, B=B3B2B1B0

•A==B, if (A3==B3) AND (A2==B2) AND (A1==B1) AND
(A0==B0)

– bit equality xi=AiBi+Ai’Bi’, (A==B) = x3x2x1x0

50

4-bit Equality

Comparator

A

B
E

4

4
1

2

Hsi-Pin Ma

A 4-bit Equality Comparator

•Optimization
– Regularity

– Reuse

51

Ai

Bi

xi

MX
A0
B0

MX
A1
B1

MX
A2
B2

MX
A3
B3

ME E

x0

x1

x2

x3

Ai
Bi

xi

3

4

Hsi-Pin Ma

Magnitude Comparator
•Comparison of two numbers, three possible

results (A>B, A=B, A<B)
•Design approaches (for n-bit numbers)

– By truth table: 22n rows => not practicable

– By algorithm to build a regular circuit

•A=A3A2A1A0, B=B3B2B1B0

•A==B, if (A3==B3) AND (A2==B2) AND (A1==B1) AND
(A0==B0)

– equality xi=AiBi+Ai’Bi’, (A=B) = x3x2x1x0

•(A>B) = A3B3’+x3A2B2’+x3x2A1B1’ +x3x2x1A0B0’

•(A<B) = A3’B3+x3A2’B2+x3x2A1’B1 +x3x2x1A0’B0

52

1

2

3

x

Hsi-Pin Ma

Magnitude Comparator

53

4

XNOR

A3B3’
x3A2B2’x3x2A1B1’

x3x2x1A0B0’

A3’B3

x3A2’B2

x3x2A1’B1

x3x2x1A0’B0

Hsi-Pin Ma

Maximun Unit

54

a

n

bb
n

a
n y

n
n

a > b

1

0

gt
M

agnitude
C

om
parator

M
ux

y = max{a, b}

Hsi-Pin Ma

Decoders

55

Hsi-Pin Ma

One-hot Representation
•Represent a set of N elements with N bits
•Exactly one bit is set

56

Binary One-hot

000 00000001

001 00000010

010 00000100

011 00001000

100 00010000

101 00100000

110 01000000

111 10000000

Hsi-Pin Ma

Decoder
• A decoder is a combinational circuit that converts

binary information from n input lines to m (maximum
of 2n) unique output lines
–n-to-m-line decoder

• A binary one-hot decoder converts a symbol from
binary code to a one-hot code
– Output variables are mutually exclusive because

only one output can be equal to 1 at any time (the
very 1-minterm)

– Example

•binary input a to one-hot output b

 or
57

b[i] = 1 if a = i b = 1 << a

Hsi-Pin Ma

1-to-2-Line Decoder

58

5. Combinational Components 5-20

Figure 15: Encoder and decoder.

(c) Boolean expression (d) Logic diagram

=
0

AE ’

=
0

AE

0C

1C

1 00
AE C C

0

1

x

1

1

0

0

1

0

1

0

0

0
A

0C

1C
E

1 0

0
A

E

1 0

C C

Decoder

(b) Truth table(a) Graphic symbol

Figure 16: A 1-to-2 decoder [Gajski].

☞ The decoder output variables are mutually exclusive because only one output

can be equal to 1 at any time.

☞ The output line whose value is 1 represents the minterm equivalent of the

binary number presently available in the input lines.

☞ A decoder with an enable (E) input is also called a demultiplexer (DMUX or

DEMUX).

☞ Larger decoders can be implemented using smaller decoders.

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

x D0D1

5. Combinational Components 5-20

Figure 15: Encoder and decoder.

(c) Boolean expression (d) Logic diagram

=
0

AE ’

=
0

AE

0C

1C

1 00
AE C C

0

1

x

1

1

0

0

1

0

1

0

0

0
A

0C

1C
E

1 0

0
A

E

1 0

C C

Decoder

(b) Truth table(a) Graphic symbol

Figure 16: A 1-to-2 decoder [Gajski].

☞ The decoder output variables are mutually exclusive because only one output

can be equal to 1 at any time.

☞ The output line whose value is 1 represents the minterm equivalent of the

binary number presently available in the input lines.

☞ A decoder with an enable (E) input is also called a demultiplexer (DMUX or

DEMUX).

☞ Larger decoders can be implemented using smaller decoders.

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

x D0

D1

D0=x’
D1=x

4
1 2

3

Hsi-Pin Ma

2-to-4-Line Decoder

59

a1 a0 b3 b2 b1 b0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

1 2

b3 = a1a0
b2 = a1a

0
0

b1 = a01a0
b0 = a01a

0
0

3

Hsi-Pin Ma

3-to-8-Line Decoder

60

y

z

4

1

2

3

Hsi-Pin Ma

Enabling

•Enabling permits an input signal to pass
through to an output.

61

X
EN F

EN X F

0 0 0

0 1 0

1 0 0

1 1 1

F = EN·X

Hsi-Pin Ma

Decoder with Enable Input (1/3)

•Line decoder with enable control (E)
•Also called demultiplexer (DMUX, DEMUX)

62

5. Combinational Components 5-20

Figure 15: Encoder and decoder.

(c) Boolean expression (d) Logic diagram

=
0

AE ’

=
0

AE

0C

1C

1 00
AE C C

0

1

x

1

1

0

0

1

0

1

0

0

0
A

0C

1C
E

1 0

0
A

E

1 0

C C

Decoder

(b) Truth table(a) Graphic symbol

Figure 16: A 1-to-2 decoder [Gajski].

☞ The decoder output variables are mutually exclusive because only one output

can be equal to 1 at any time.

☞ The output line whose value is 1 represents the minterm equivalent of the

binary number presently available in the input lines.

☞ A decoder with an enable (E) input is also called a demultiplexer (DMUX or

DEMUX).

☞ Larger decoders can be implemented using smaller decoders.

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

C0=EA0’
C1=EA0

1 2 3

5. Combinational Components 5-20

Figure 15: Encoder and decoder.

(c) Boolean expression (d) Logic diagram

=
0

AE ’

=
0

AE

0C

1C

1 00
AE C C

0

1

x

1

1

0

0

1

0

1

0

0

0
A

0C

1C
E

1 0

0
A

E

1 0

C C

Decoder

(b) Truth table(a) Graphic symbol

Figure 16: A 1-to-2 decoder [Gajski].

☞ The decoder output variables are mutually exclusive because only one output

can be equal to 1 at any time.

☞ The output line whose value is 1 represents the minterm equivalent of the

binary number presently available in the input lines.

☞ A decoder with an enable (E) input is also called a demultiplexer (DMUX or

DEMUX).

☞ Larger decoders can be implemented using smaller decoders.

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4

5. Combinational Components 5-20

Figure 15: Encoder and decoder.

(c) Boolean expression (d) Logic diagram

=
0

AE ’

=
0

AE

0C

1C

1 00
AE C C

0

1

x

1

1

0

0

1

0

1

0

0

0
A

0C

1C
E

1 0

0
A

E

1 0

C C

Decoder

(b) Truth table(a) Graphic symbol

Figure 16: A 1-to-2 decoder [Gajski].

☞ The decoder output variables are mutually exclusive because only one output

can be equal to 1 at any time.

☞ The output line whose value is 1 represents the minterm equivalent of the

binary number presently available in the input lines.

☞ A decoder with an enable (E) input is also called a demultiplexer (DMUX or

DEMUX).

☞ Larger decoders can be implemented using smaller decoders.

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

graphic symbol/
block diagram

Hsi-Pin Ma

Decoder with Enable Input (2/3)
•Constructed with NAND gates

– decoder minterms in their complemented form (more
economical)

63

D0=(E’A’B’)’
D1=(E’A’B)’
D2=(E’AB’)’
D3=(E’AB)’

1 2

3

4

Hsi-Pin Ma

Decoder with Enable Input (3/3)

•decoder with enable vs. demultiplexer

64

Hsi-Pin Ma

Decoder Expansion

•Larger decoders can be implemented with
smaller decoders

65
A 4-to-16-line decoder from two 3-to-8-line decoders

Hsi-Pin Ma

Combinational Logic Implementation
with Decoders

•Any combinational circuit with n inputs and m
outputs can be implemented with an n-to-2n decoder
in conjunction with m external OR gates

66

S(x, y, z) =
�

(1, 2, 4, 7)
C(x, y, z) =

�
(3, 5, 6, 7)

1 2

3
4

Hsi-Pin Ma

Encoders

67

Hsi-Pin Ma

Encoder
• An encoder is an inverse of a decoder.
• Encoder is a logic module that converts a one-hot

input signal to a binary-encoded output signal
• Other input patterns are forbidden in the truth

table.
• Example: a 4->2 encoder

68

a3 a2 a1 a0 b1 b0
0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1

a3 a1a2 a0

b1

b0

b0 = a3 + a1
b1 = a3 + a2

Hsi-Pin Ma

Encoder (1/2)
•A combinational logic that performs the inverse

operation of a decoder
– Only one input has value 1 at any given time

– Can be implemented with OR gates

69

x=D4+D5+D6+D7

y=D2+D3+D6+D7

z=D1+D3+D5+D7

1 2

3

Hsi-Pin Ma

Encoder (2/2)

70

x=D4+D5+D6+D7

y=D2+D3+D6+D7

z=D1+D3+D5+D7

4

However, when both D3 and D6 goes 1,
the output will be 111 (ambiguity)!!!

Use priority encoder!

illegal inputs

Hsi-Pin Ma

Priority Encoder (1/2)
•Ensure only one of the input is encoded
•D3 has the highest priority, while D0 has the lowest priority.
•X is the don’t care conditions, V is the valid output indicator.

71

V=D0+D1+D2+D3

D0 D1 D2 D3 x y V
1 2

3

Hsi-Pin Ma

Priority Encoder (2/2)

72

x=D2+D3

y=D3+D1D2’

3

4

Hsi-Pin Ma

Arbiters and Priority Encoders

73

Hsi-Pin Ma

Arbiters

•Arbiter handles requests from multiple devices
to use a single resource
– Also called find-first-one (FF1) unit

– Accepts an arbitrary input signal (r), and outputs a one-

hot signal (g) to indicate the least significant 1 (or the
most significant 1) of the input

– Example: input: 01011100

•output: 00000100 (least significant 1)

•output: 01000000 (most significant 1)

74

Finds the first “1” bit in r

g[i] = 1 if r[i] = 1 and r[j] = 0 for j < i

(for the least significant 1)

Hsi-Pin Ma

Implementation of Arbiters

75

1 bit cell of arbiter

r1
g1

r0
g0

r3
g3

r2
g2

r0 g0

g1
r1

g2
r2

g3
r3

Using bit cell

Using look ahead

Hsi-Pin Ma

Priority Encoder

•n-bit one-hot input signal a
•m-bit output signal b

– b indicates the position of the first 1 bit in a

76

mn
a b

P
riority

E
ncoder

m = dlog2 ne

n n m
r g

Arbiter
a b

Encoder

Hsi-Pin Ma

Multiplexers

77

Hsi-Pin Ma

Multiplexers/Selectors
•A Multiplexer selects (usually by n select lines) binary

information from one of many (usually 2n) input lines
and directs it to a single output line.

78

S Y

0 I0

1 I1

Y=S’I0+SI1

1

2

3

4

graphic symbol/
block diagram

2:1 multiplexer

Hsi-Pin Ma

4:1 MUX

79

a

b

sel

out

00

11
d

c

01

10

2

s1s0

I0

I1

I2

I3

Y

Y=s0‘s1’I0+s0s1’I1+s0‘s1I2+s0s1I3

1

2

3

4

graphic symbol/
block diagram

Hsi-Pin Ma

MUX as a Decoder

•MUX = decoder + OR gate + enable (optional)

80

5. Combinational Components 5-24

(c) Boolean expression (d) Logic diagram

Y

D1

D0

S1 S0

D2

D3

0

1

0

1

0

0

1

1

D1D
0

Y =

+

’

D3S0
S

1
+

+

S0
S

1

S0
S

1S0
S

1

D2

’ ’

’

D1 D0

Y

D2D3

3 2 1 0

0
S

S
1

Selector

Y

0
S

S
1

D1

D0

D2

D3

(a) Graphic symbol (b) Truth table

Figure 19: A 4-to-1 multiplexer (selector) [Gajski].

.

.

.
.

.
.

Decoder

Figure 20: A MUX can be considered as extended from a decoder.

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4:1 MUX

Hsi-Pin Ma

Multiplexer Implementation

•One-bit 4:1 multiplexer

81

Using AND-OR circuit Using Tri-state buffer

Hsi-Pin Ma

Quadruple 2:1 MUX (4-bit 2:1 MUX)

82

four 2:1 MUX with enable

Hsi-Pin Ma

Bus
•Bus is a common communication channel which is

routed around modules on a microchip or PCB.
•To construct a bus, we use a component, tristate driver

(buffer), which has three possible output states: 0, 1, Z
(high impedance).

•Functionally, a bus is equivalent to a selector. It has many
inputs but allow only one data on the bus at a time.

83

5. Combinational Components 5-27

Buses

✯ Bus is a common communication channel which is routed around modules

(e.g., controller, ALU, register file, memories, etc.) on a microchip or PCB.

✯ To construct a bus, we use a component called the tristate driver, which has

three possible output states, i.e., 0, 1, and (high impedance).

✯ Functionally, a bus is equivalent to a selector—it has many inputs but allows

only one data on the bus at a time.

D1

D0

D2

D3

1S 0S

0

1

0

1

0

0

1

1

Y

3 2 1 0

1S 0S

Y

D1

D0

D2

D3

(e) 4−input bus (f) Truth table for 4−input bus

S

Y

D1

D0

(c) 2−input bus (d) Truth table for 2−input bus

D1

D0

S Y

0

1

(b) Truth table for tristate driver(a) Tristate driver symbol

YD

E

D

Y

0

1

E

Z

Decoder

Bus

Bus

Figure 23: Bus implementation [Gajski].

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

C

A

Hsi-Pin Ma

MUX with Three-State Gates

84

5. Combinational Components 5-27

Buses

✯ Bus is a common communication channel which is routed around modules

(e.g., controller, ALU, register file, memories, etc.) on a microchip or PCB.

✯ To construct a bus, we use a component called the tristate driver, which has

three possible output states, i.e., 0, 1, and (high impedance).

✯ Functionally, a bus is equivalent to a selector—it has many inputs but allows

only one data on the bus at a time.

D1

D0

D2

D3

1S 0S

0

1

0

1

0

0

1

1

Y

3 2 1 0

1S 0S

Y

D1

D0

D2

D3

(e) 4−input bus (f) Truth table for 4−input bus

S

Y

D1

D0

(c) 2−input bus (d) Truth table for 2−input bus

D1

D0

S Y

0

1

(b) Truth table for tristate driver(a) Tristate driver symbol

YD

E

D

Y

0

1

E

Z

Decoder

Bus

Bus

Figure 23: Bus implementation [Gajski].

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

5. Combinational Components 5-27

Buses

✯ Bus is a common communication channel which is routed around modules

(e.g., controller, ALU, register file, memories, etc.) on a microchip or PCB.

✯ To construct a bus, we use a component called the tristate driver, which has

three possible output states, i.e., 0, 1, and (high impedance).

✯ Functionally, a bus is equivalent to a selector—it has many inputs but allows

only one data on the bus at a time.

D1

D0

D2

D3

1S 0S

0

1

0

1

0

0

1

1

Y

3 2 1 0

1S 0S

Y

D1

D0

D2

D3

(e) 4−input bus (f) Truth table for 4−input bus

S

Y

D1

D0

(c) 2−input bus (d) Truth table for 2−input bus

D1

D0

S Y

0

1

(b) Truth table for tristate driver(a) Tristate driver symbol

YD

E

D

Y

0

1

E

Z

Decoder

Bus

Bus

Figure 23: Bus implementation [Gajski].

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4-to-1 MUX

2-to-1 MUX

Hsi-Pin Ma

Shifter

85

Hsi-Pin Ma

Shifter

•A shifter shifts one bit position of its content
to the left or right at a time, taking the input
bit from the right or left when it shifts.

86

D
at

a
In

Control =

D
at

a
O

ut

Shift amount

Shift direction

Shift type (logical, arith, circular)

Hsi-Pin Ma

Shifter Types
•Logical shifter

–Shift the number to the left or right and fills empty spots with
0’s

–Ex: 1101, LSR 1=0110, LSL 1=1010

•Arithmetic shifter
–Same as logical shifter but on right shift fills empty the MSBs

with the sign bit (sign extension)

–Ex: 1101, ASR 1=1110, ASL 1=1010

•Barrel shifter (rotator, cyclic shift)
–Rotate numbers in a circle such that empty spots are filled

with bits shifted off the other end

–Ex: 1101, RSR 1=1110, RSL 1=1011

87

