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Combinational Circuits
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Logic Circuits for the Digital System

•Combinational circuits
– Logic circuits whose outputs at any time are determined 

directly and only from the present input combination.


•Sequential circuits
– Circuits that employ memory elements + (combinational) 

logic gates

– Outputs are determined from the present input 

combination as well as the state of the memory cells.
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Combinational Logic Circuits

•Memoryless: o=f(i)
– Used for control, arithmetic, and data steering.

5
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Closure

•Combinational logic 
circuits are closed under 
acyclic composition 


•Cyclic composition of two 
combinational logic 
circuits
– The feedback variable can 

remember the history of the 
circuits


– Sequential logic circuit 

6
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Analysis of Combinational Circuits
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Analysis Procedure

•Analysis for an available logic diagram
–  Make sure the given circuit is combinational 


•No feedback path or memory element
– Derive the corresponding Boolean functions
– Derive the corresponding truth table
– Verify and analyze the design


•Logic simulation (waveforms)

– Explain the function

8
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Derivation of Boolean Functions (1/2)

•Label all gate outputs that are functions of the 
input variables only. Determine the functions.

•Label all gate outputs that are functions of the 
input variables and previously labeled gate 
outputs, and find the functions.

•Repeat previous step until all the primary 
outputs are obtained.

9
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•Example
– List all functions


•F2=AB+AC+BC

•T1=A+B+C

•T2=ABC

•T3=F2’T1

•F1=T3+T2


– F1=T3+T2=F2’T1+ABC=(AB+AC+BC)’(A+B+C)+ABC 
=A’BC’+A’B’C+AB’C’+ABC


– Full adder (F1: sum, F2: carry)

Derivation of Boolean Functions (2/2)

10
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Derivation of Truth Table (1/2)

•For n input variables
– List all the 2n input combinations from 0 to 2n-1.

– Partition the circuit into small single-output blocks and 

label the output of each block.

– Obtain the truth table of the blocks depending on the 

input variables only.

– Proceed to obtain the truth tables for other blocks that 

depend on previously defined truth tables.

11
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Derivation of Truth Tables (2/2)

•Example

12
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Design Procedure
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Design Procedure
•Specification: From the specifications, determine the 

inputs, outputs, and their symbols.
•Formulation: Derive the truth table (functions) from 

the relationship between the inputs and outputs
•Optimization: Derive the simplified Boolean functions 

for each output function. Draw a logic diagram or 
provide a netlist for the resulting circuits using AND, 
OR, and inverters.

•Technology Mapping: Transform the logic diagram or 
netlist to a new diagram or netlist using the available 
implementation technology.

•Verification: Verify the design.
14
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A BCD-to-Excess-3 Code Converter (1/3)

•Spec
– input (ABCD), output (wxyz) (MSB to LSB)

– ABCD: 0000 ~ 1001 (0~9)


•Formulation
– wxyz = ABCD+0011

15

don’t care

Input BCD Output Excess-3 Code

1
BCD-to-Excess-3

Code Converter

A
B
C
D

w
x
y
z

2
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A BCD-to-Excess-3 Code Converter (2/3)
•Optimization

16

z=D’
y=CD+C’D’
x=B’C+B’D+BC’D’
w=A+BC+BD

z=D’
y=CD+(C+D)’
x=B’(C+D)+BC’D’
w=A+B(C+D)

from K-map

reduce gate numbers

3
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A BCD-to-Excess-3 Code Converter (3/3)

17

4. Draw logic diagram4
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A BCD-to-Seven-Segment Display 
Decoder (1/2)

•Spec
– input (ABCD), output (abcdefg) (MSB to LSB)

– ABCD: 0000 ~ 1001 (0~9)


•Formulation

18

a
b
c

d
e
f g

BCD Input Seven-Segment Decoder

A B
C

C D a b c d e f g

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 0 1 1

All other inputs 0 0 0 0 0 0 0

1

2



Hsi-Pin Ma

A BCD-to-Seven-Segment Decoder (2/2)

•Optimization
– 7x K-Map simplification

– a=A’C+A’BD+B’C’D’+A’B’C’

– b=A’B’+A’C’D’+A’CD+AB’C’

– c=A’B+A’D+B’C’D’+AB’C’

– d=A’CD’+A’B’C+B’C’D’+AB’C’+A’BC’D

– e=A’CD’+B’C’D’

– f=A’BC’+A’C’D’+A’BD’+AB’C’

– f=A’CD’+A’B’C+A’BC’+AB’C’


•Technology Mapping
19
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Binary Adder-Subtractor

20
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•Half adder
– Inputs: x, y

– Outputs: C (carry), S(sum)


•Full adder
– Inputs: x, y, z(carry from previous lower significant bit) 

– Outputs: C(carry), S(sum)

Binary Half Adder & Full Adder (1/3)

21

S = x�y + xy� = x�y

C = xy

S = x�y�z + x�yz� + xy�z� + xyz = x�y�z

C = xy + yz + zx

1

1

2

2

3

3
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Binary Half Adder & Full Adder (2/3)
•Logic diagram

22

S = x�y + xy� = x�y

C = xy

S = x�y�z + x�yz� + xy�z� + xyz = x�y�z

C = xy + yz + zx

Half Adder

Full Adder

4
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Binary Half Adder & Full Adder (3/3)
•Full adder implemented with half adders

– Two half adders and one OR gate

23

S = z�(x�y)

C = z(xy� + x�y) + xy

HA

HA
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AiBi

Ci+1
Ci

Si

Ripple-Carry Adder (1/4)

24

1 0 1 1 0

   1 0 1 1

   1 0 0 1

1 0 1 0 0

A
B

S

C

Si

Ci
Ci+1

Ai

Bi

eg. S=A+B, A=A3A2A1A0,B=B3B2B1B0, S=S3S2S1S0

unsigned addition

(Cn+1SnSn-1...S1)=(AnAn-1...A1)+(BnBn-1...B1)

1 The computation time of a 
ripple-carry adder grows 
linearly with word length n

T=O(n) due to carry chain

critical path

4-bit binary 
adder

B3B2B1B0 A3A2A1A0

S3S2S1S0

C0C4
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Ripple-Carry Adder (2/4)

25

AiBi

Ci+1
Ci

Si

3. Boolean Algebra and Logic Gates 3-12

Example 7

Consider the full adder as defined in the following truth table.

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

We first derive expressions for the two output functions that contain a minimum

number of operators.

Note that the carry function could be reduced to .

We can implement with NAND and NOR gates.

The gate-level implementations for the full adder are shown in Fig. 2.

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

Ai Bi Ci Ci+1 Si

5. Combinational Components 5-9
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(b)  Map representation
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(c) Full adder logic schematic
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(e)  Graphic symbol

Adder 0out
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(d)  8−bit adder unit

S

X Y

Figure 5: Ripple-carry adder [Gajski].

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

AiBi

Ci

AiBi

Ci

Si = Ai�Bi�Ci Ci+1 = AiBi + Ci(Ai�Bi)

1

2

3
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c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

Ai Bi

Ci
Ci+1

Si
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Ripple-Carry Adder (3/4)

26

Si = f(Ai, Bi, Ci) = Ai�Bi�Ci

Ci+1 = g(Ai, Bi, Ci) = Ai·Bi +Bi·Ci + Ci·Ai

C1 = g(A0, B0, C0)

C2 = g(A1, B1, C1)

C3 = g(A2, B2, C2)

C4 = g(A3, B3, C3)

S0 = f(A0, B0, C0)

S1 = f(A1, B1, C1)

S2 = f(A2, B2, C2)

S3 = f(A3, B3, C3)

define
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Multi-bit Notation

•Multi-bit signal or a bus

•Verilog bit-select (bit-slice) or part-select
– b[7:0]

– b[7]

– b[5:3]

27



Hsi-Pin Ma

•For a full adder, define what happens to carry
– Carry-generate: Cout=1 independent of Cin

• 

– Carry-propagate: Cout=Cin

• 

– Carry-kill: Cout=0 independent of Cin


• 


•Use the above info
–  

–  

Carry Lookahead Adder (1/3)

28

Gi = Ai·Bi

Pi = Ai�Bi

Ki = A�
i·B�

i

Ai Bi Gi Pi Ki

0 0 0 0 1
0 1 0 1 0
1 0 0 1 0
1 1 1 0 0

Ci+1 = AiBi + BiCi + AiCi = AiBi + (Ai + Bi)Ci = Gi + PiCi

Si = Ai�Bi�Ci = Pi�Ci

1

2

3
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•Do not have to wait for Ci to compute Ci+1

–  

–  

–  

–  


•Fixed delay time for each carry (but not the 
same for every gate!)

•Fanout of Gi & Pi also affect the overall delay => 
usually be limited to 4 bits

Carry Lookahead Adder (2/3)

29

Ci+1 = Gi + PiCi

Ci+2 = Gi+1 + Pi+1Ci+1 = Gi+1 + Pi+1Gi + Pi+1PiCi

Ci+3 = Gi+2 + Pi+2Ci+2 = Gi+2 + Pi+2Gi+1 + Pi+2Pi+1Gi + Pi+2Pi+1PiCi

Ci+4 = Gi+3 + Pi+3Ci+3 = Gi+3 + Pi+3Gi+2 + Pi+3Pi+2Gi+1 + Pi+3Pi+2Pi+1Gi + Pi+3Pi+2Pi+1PiCi

3
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5. Combinational Components 5-11

☞ Roughly, in the worst case an -bit ripple-carry adder has gate delays, but

an -bit CLA adder has gate delays, assuming only 2-input gates.

(a)  4−bit slice of a ripple−carry adder

ci+4

x y i+3i+3

g pi+3i+3

i+3s

i+3c

x y

g p

s

c

x y

g p

s

c

x y

g p

s

c iCLA generator

i+2 i+2

i+2 i+2

i+2

i+2 i+1

i+1

i+1i+1

i+1 i+1

i

i

i i

i

p(i, i+3)g(i, i+3)

i+3c c i+2 c i+1p(i, i+3)g(i, i+3)

c i

ci+4

pi+3gi+3 gi+2 pi+2 pi+1gi+1 pigi

2.4

3.2

2.4

2.4 2.4 2.4 2.43.2 3.2 3.2

3.2

2.4 2.4

2.4

2.4

2.4

c

x y

c

s

x y

c

s

ix
iy

ic

is

i+1

i+1i+1i+2

i+2

i+2

i+1i+2

i+4

FA FA FA

x y

c

s

i+3

i+3

i+3

i+3

FA

gi ip

4.2

2.4

4.22.4

2.4

4.2

2.4

4.22.4

2.4

4.2

2.4

4.22.4

2.4 2.4

2.4

2.4

4.2

4.2

(b)  4−bit adder slice with CLA generator

(c)  Logic schematic of CLA

4.2 4.2 4.2 4.2

4.24.24.24.22.4 2.4 2.4 2.4

Figure 6: CLA generator [Gajski].

Consider

again. It can be rewritten as

where

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

AiBi

Ci

Ai+1Bi+1Ai+2Bi+2Ai+3Bi+3

Carry Lookahead Adder (3/3)

30

5. Combinational Components 5-11

☞ Roughly, in the worst case an -bit ripple-carry adder has gate delays, but

an -bit CLA adder has gate delays, assuming only 2-input gates.
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Consider

again. It can be rewritten as

where

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

CLA generator

4

4-bit binary 
adder

B3B2B1B0 A3A2A1A0

S3S2S1S0

C0C4
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Binary Adders/Subtractors

•Binary subtraction normally is 
performed by adding the minuend to 
the 2’s complement of the subtrahend.

31

M Function Comments

0 S=A+B addition
1 S=A+B’+1 subtraction

M AiBi

CiCi+1

Si

1

2 3

4

overflow detection
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Decimal Adder

32
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Decimal Adders (1/3)

•Addition of 2 decimal digits in BCD
– {Cout,S}=A+B+Cin

•S=S8S4S2S1, A=A8A4A2A1, B=B8B4B2B1


– A digit in BCD cannot exceed 9, add 6 (0110) 
for final correction.

33

Decimal 
symbol

BCD digit

0

1

2

3

4

5

6

7

8

9

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

A
B

1 0

   810

   910

1 710

         1 0 0 0 0

            1 0 0 02

            1 0 0 12

         1 0 0 0 12


                  0 1 1 02


0 0 0 1 0 1 1 12

KZ binary coded results

BCD coded results

1

2 3

if >9, add 6
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Decimal Adders (2/3)

34

Z8       Z4       Z2        Z1

Z8Z4 Z8Z2

2 3
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Decimal Adders (3/3)

35

B8 B4  B2  B1 A8 A4  A2 A1

Cout=K+Z8Z4+Z8Z2

4

3

Cout

Cin
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Binary Multiplier

36
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Multiplication
•Multiplication consists of

– Generation of partial products

– Accumulation of shifted partial products

37

1210

510

6010

Multiplicand
Multiplier

Product

Partial Product
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M-bit x N-bit Multiplication

38

P = (
M−1∑

j=0

yj2
j)(

N−1∑

i=0

xi2
i) =

N−1∑

i=0

M−1∑

j=0

xiyj2
i+j
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2-bit x 2-bit Binary Multiplier

39

1

4

2,3

A0B0A0B1

A1B0A1B1
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4-bit x 3-bit Binary Multiplier

40

                               B3       B2         B1      B0


                                          A2        A1        A0

                           A0B3   A0B2  A0B1  A0B0

                 A1B3  A1B2   A1B1  A1B0


        A2B3   A2B2  A2B1   A2B0

C6      C5         C4      C3          C2         C1      C0

X

1

2,3

4
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Other Arithmetic Functions

•It is convenient to design the functional blocks 
by contraction
– Removal of redundancy from circuit to which input 

fixing has been applied


•Functions
– Increment

– Decrement

– Multiplication by constant

– Division by constant

– Zero fill and extension

41
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Design by Contraction

•Simplify the logic in a functional block to 
implement a different function
– The new function must be realizable from the original 

function by applying rudimentary functions to its inputs

– Contraction is treated here only for application of 0s and 

1s (not for X and X’).

– After application of 0s and 1s, equations or the logic 

diagram are simplified

42



Hsi-Pin Ma

Design by Contraction Example

•Contraction of a ripple carry adder to 
incrementer for n=1 (Set B=001)

43
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Incrementing and Decrementing

•Incrementing
– Add a fixed value to an arithmetic variable

– Fixed value is often 1, called counting up


•A+1, B+4

– Functional block is called incrementer


•Decrementing
– Subtracting a fixed value from an arithmetic variable

– Fixed value is often 1, called counting down


•A-1, B-4

– Functional block is called decrementer

44
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Multiplication/Division by 2n

•Shift left (multiplication) or right (division)

45

© 2008 Pearson Education, Inc.
M. Morris Mano & Charles R. Kime
LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e
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© 2008 Pearson Education, Inc.
M. Morris Mano & Charles R. Kime
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shift left by 2

shift right by 2
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Multiplication by a Constant

46

© 2008 Pearson Education, Inc.
M. Morris Mano & Charles R. Kime
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Zero Fill

•Fill an m-bit operand with 0s to become an n-bit 
operand with n > m.

•Filling usually is applied to the MSB end of the 
operand, but can also be done on the LSB end.

•11110101 filled to 16 bits
– MSB end: 0000000011110101

– LSB end: 1111010100000000

47

{{8{0}}11110101}

{11110101{8{0}}}
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Extension

•Increase in the number of bits at the MSB end of 
an operand by using a complement 
representation
– Copies the MSB of the operand into the new positions

– 01110101 extended to 16 bits


•0000000001110101

– 11110101 extended to 16 bits

•1111111111110101

48

{{8{a7}}a71110101}
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Magnitude Comparator

49
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A 4-bit Equality Comparator

•Spec
– input A(3:0), B(3:0); output E (1/0 for equal/unequal)


•Formulation
– Bypass the truth table approach due to its size (8 inputs)

– By algorithm to build a regular circuit


•A=A3A2A1A0, B=B3B2B1B0

•A==B, if (A3==B3) AND (A2==B2) AND (A1==B1) AND 
(A0==B0)


– bit equality xi=AiBi+Ai’Bi’,  (A==B) = x3x2x1x0

50

4-bit Equality 

Comparator

A

B
E

4

4
1

2
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A 4-bit Equality Comparator

•Optimization
– Regularity

– Reuse

51
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xi

MX
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Magnitude Comparator
•Comparison of two numbers, three possible 

results (A>B, A=B, A<B)
•Design approaches (for n-bit numbers)

– By truth table: 22n rows => not practicable

– By algorithm to build a regular circuit


•A=A3A2A1A0, B=B3B2B1B0

•A==B, if (A3==B3) AND (A2==B2) AND (A1==B1) AND 
(A0==B0)


– equality xi=AiBi+Ai’Bi’,  (A=B) = x3x2x1x0

•(A>B) = A3B3’+x3A2B2’+x3x2A1B1’ +x3x2x1A0B0’

•(A<B) = A3’B3+x3A2’B2+x3x2A1’B1 +x3x2x1A0’B0

52

1

2

3

x
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Magnitude Comparator

53

4

XNOR

A3B3’
x3A2B2’x3x2A1B1’

x3x2x1A0B0’

A3’B3

x3A2’B2

x3x2A1’B1

x3x2x1A0’B0
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Maximun Unit

54
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Decoders

55
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One-hot Representation
•Represent a set of N elements with N bits
•Exactly one bit is set

56

Binary One-hot

000 00000001

001 00000010

010 00000100

011 00001000

100 00010000

101 00100000

110 01000000

111 10000000
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Decoder
• A decoder is a combinational circuit that converts 

binary information from n input lines to m (maximum 
of 2n) unique output lines
–n-to-m-line decoder


• A binary one-hot decoder converts a symbol from 
binary code to a one-hot code
– Output variables are mutually exclusive because 

only one output can be equal to 1 at any time (the 
very 1-minterm)


– Example

•binary input a to one-hot output b 


                                      or
57

b[i] = 1 if a = i b = 1 << a
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1-to-2-Line Decoder

58

5. Combinational Components 5-20

Figure 15: Encoder and decoder.

(c)  Boolean expression (d)  Logic diagram
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Figure 16: A 1-to-2 decoder [Gajski].

☞ The decoder output variables are mutually exclusive because only one output

can be equal to 1 at any time.

☞ The output line whose value is 1 represents the minterm equivalent of the

binary number presently available in the input lines.

☞ A decoder with an enable (E) input is also called a demultiplexer (DMUX or

DEMUX).

☞ Larger decoders can be implemented using smaller decoders.

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005
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2-to-4-Line Decoder

59

a1 a0 b3 b2 b1 b0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

1 2

b3 = a1a0
b2 = a1a

0
0

b1 = a01a0
b0 = a01a

0
0

3
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3-to-8-Line Decoder

60

y
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Enabling

•Enabling permits an input signal to pass 
through to an output.

61

X
EN F

EN X F

0 0 0

0 1 0

1 0 0

1 1 1

F = EN·X
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Decoder with Enable Input (1/3)

•Line decoder with enable control (E)
•Also called demultiplexer (DMUX, DEMUX)

62
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Decoder with Enable Input (2/3)
•Constructed with NAND gates

– decoder minterms in their complemented form (more 
economical)

63

D0=(E’A’B’)’
D1=(E’A’B)’
D2=(E’AB’)’
D3=(E’AB)’

1 2

3

4
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Decoder with Enable Input (3/3)

•decoder with enable vs. demultiplexer

64
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Decoder Expansion

•Larger decoders can be implemented with 
smaller decoders

65
A 4-to-16-line decoder from two 3-to-8-line decoders 
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Combinational Logic Implementation 
with Decoders

•Any combinational circuit with n inputs and m 
outputs can be implemented with an n-to-2n decoder 
in conjunction with m external OR gates

66

S(x, y, z) =
�

(1, 2, 4, 7)
C(x, y, z) =

�
(3, 5, 6, 7)

1 2

3
4
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Encoders

67
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Encoder
• An encoder is an inverse of a decoder.
• Encoder is a logic module that converts a one-hot 

input signal to a binary-encoded output signal
• Other input patterns are forbidden in the truth 

table.
• Example: a 4->2 encoder

68

a3 a2 a1 a0 b1 b0
0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1

a3 a1a2 a0

b1

b0

b0 = a3 + a1
b1 = a3 + a2
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Encoder (1/2)
•A combinational logic that performs the inverse 

operation of a decoder
– Only one input has value 1 at any given time

– Can be implemented with OR gates

69

x=D4+D5+D6+D7

y=D2+D3+D6+D7

z=D1+D3+D5+D7

1 2

3
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Encoder (2/2)

70

x=D4+D5+D6+D7

y=D2+D3+D6+D7

z=D1+D3+D5+D7

4

However, when both D3 and D6 goes 1, 
the output will be 111 (ambiguity)!!!

Use priority encoder!

illegal inputs
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Priority Encoder (1/2)
•Ensure only one of the input is encoded
•D3 has the highest priority, while D0 has the lowest priority.
•X is the don’t care conditions, V is the valid output indicator.

71

V=D0+D1+D2+D3

D0 D1 D2 D3 x y V
1 2

3
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Priority Encoder (2/2)

72

x=D2+D3

y=D3+D1D2’

3

4
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Arbiters and Priority Encoders

73
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Arbiters

•Arbiter handles requests from multiple devices 
to use a single resource
– Also called find-first-one (FF1) unit

– Accepts an arbitrary input signal (r), and outputs a one-

hot signal (g) to indicate the least significant 1 (or the 
most significant 1) of the input


– Example: input: 01011100

•output: 00000100 (least significant 1)

•output: 01000000 (most significant 1)

74

Finds the first “1” bit in r

g[i] = 1 if r[i] = 1 and r[j] = 0 for j < i


(for the least significant 1)
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Implementation of Arbiters

75

1 bit cell of arbiter

r1
g1

r0
g0

r3
g3

r2
g2

r0 g0

g1
r1

g2
r2

g3
r3

Using bit cell

Using look ahead
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Priority Encoder

•n-bit one-hot input signal a
•m-bit output signal b

– b indicates the position of the first 1 bit in a

76

mn
a b

P
riority

E
ncoder

m = dlog2 ne

n n m
r g

Arbiter
a b

Encoder
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Multiplexers

77
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Multiplexers/Selectors
•A Multiplexer selects (usually by n select lines) binary 

information from one of many (usually 2n) input lines 
and directs it to a single output line. 

78

S Y

0 I0

1 I1

Y=S’I0+SI1

1

2

3

4

graphic symbol/
block diagram

2:1 multiplexer
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4:1 MUX

79

a

b
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out

00

11
d

c

01

10
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s1s0
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I2
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Y

Y=s0‘s1’I0+s0s1’I1+s0‘s1I2+s0s1I3
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2

3

4

graphic symbol/
block diagram
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MUX as a Decoder

•MUX = decoder + OR gate + enable (optional)

80

5. Combinational Components 5-24

(c)  Boolean expression (d)  Logic diagram

Y

D1

D0

S1 S0

D2

D3

0

1

0

1

0

0

1

1

D1D
0

Y = 

+

’

D3S0
S

1
+

+

S0
S

1

S0
S

1S0
S

1

D2

’ ’

’

D1 D0

Y

D2D3

3    2    1    0

0
S

S
1

Selector

Y

0
S

S
1

D1

D0

D2

D3

(a)  Graphic symbol (b)  Truth table

Figure 19: A 4-to-1 multiplexer (selector) [Gajski].

.
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.
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.
.

Decoder

Figure 20: A MUX can be considered as extended from a decoder.

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005

4:1 MUX
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Multiplexer Implementation

•One-bit 4:1 multiplexer

81

Using AND-OR circuit Using Tri-state buffer
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Quadruple 2:1 MUX (4-bit 2:1 MUX)

82

four 2:1 MUX with enable
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Bus
•Bus is a common communication channel which is 

routed around modules on a microchip or PCB.
•To construct a bus, we use a component, tristate driver 

(buffer), which has three possible output states: 0, 1, Z 
(high impedance).

•Functionally, a bus is equivalent to a selector. It has many 
inputs but allow only one data on the bus at a time.

83
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Buses

✯ Bus is a common communication channel which is routed around modules

(e.g., controller, ALU, register file, memories, etc.) on a microchip or PCB.

✯ To construct a bus, we use a component called the tristate driver, which has

three possible output states, i.e., 0, 1, and (high impedance).

✯ Functionally, a bus is equivalent to a selector—it has many inputs but allows

only one data on the bus at a time.

D1

D0

D2

D3

1S 0S

0

1

0

1

0

0

1

1

Y

3    2    1    0

1S 0S

Y

D1

D0

D2

D3

(e)  4−input bus (f)  Truth table for 4−input bus

S

Y

D1

D0

(c)  2−input bus (d)  Truth table for 2−input bus

D1

D0

S Y

0

1

(b)  Truth table for tristate driver(a)  Tristate driver symbol

YD

E

D

Y

0

1

E

Z

Decoder

Bus

Bus

Figure 23: Bus implementation [Gajski].
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MUX with Three-State Gates
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Buses

✯ Bus is a common communication channel which is routed around modules

(e.g., controller, ALU, register file, memories, etc.) on a microchip or PCB.

✯ To construct a bus, we use a component called the tristate driver, which has

three possible output states, i.e., 0, 1, and (high impedance).
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2-to-1 MUX
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Shifter

85
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Shifter

•A shifter shifts one bit position of its content 
to the left or right at a time, taking the input 
bit from the right or left when it shifts.
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Shifter Types
•Logical shifter

–Shift the number to the left or right and fills empty spots with 
0’s

–Ex: 1101, LSR 1=0110, LSL 1=1010 


•Arithmetic shifter
–Same as logical shifter but on right shift fills empty the MSBs 

with the sign bit (sign extension)

–Ex: 1101, ASR 1=1110, ASL 1=1010

•Barrel shifter (rotator, cyclic shift)
–Rotate numbers in a circle such that empty spots are filled 

with bits shifted off the other end

–Ex: 1101, RSR 1=1110, RSL 1=1011 
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