

微積分一 題庫

【章節 2.1】

p.61 (1 \cdot 2 \cdot 3 \cdot 5 \cdot 11. Determine the limit by drawing the graph : 41 \cdot 45 \cdot 46)

Exercises 1-10. You are given a number c and the graph of function f. Use the graph to find

(a)
$$\lim_{x\to c^-} f(x)$$
 (b) $\lim_{x\to c^+} f(x)$ (c) $\lim_{x\to c} f(x)$ (d) $f(c)$

1. c = 2.

2. c = 3.

3. c = 3.

5. c = -2.

11. Give the values of c for which $\lim_{x\to c} f(x)$ does not exist.

- 41. Determine the limit by drawing the graph: $\lim_{x\to 0} f(x)$; $f(x) = \begin{cases} x^2, & x < 0 \\ 1+x, & x > 0. \end{cases}$
- 45. Determine the limit by drawing the graph: $\lim_{x\to 0} f(x)$; $f(x) = \begin{cases} 2, & x \ rational \\ -2, & x \ irrational. \end{cases}$
- 46. Determine the limit by drawing the graph: $\lim_{x\to 1} f(x)$; $f(x) = \begin{cases} 2x, & x \ rational \\ 2, & x \ irrational. \end{cases}$

【章節 2.2】

22. For which of the ε 's given in the figure does the specified δ work?

Exercises 23-26. Find the largest $~\delta~$ that "works" tor the given $~\varepsilon~$.

26.
$$\lim_{x\to 2} \left(\frac{1}{5}x\right) = \frac{2}{5}$$
; $\varepsilon = 0.1$.

27. The graphs of $f(x) = \sqrt{x}$ and the horizontal lines y=1.5 and y=2.5 are shown in the figure. Use a graphing utility to find a δ >0 which is such that if $0 < |x-4| < \delta$, then $|\sqrt{x}-2| < 0.5$.

35. Give an ε , δ proof for the following statements. $\lim_{x\to 4} (2x-5) = 3$.

39. Give an ε , δ proof for the following statements. $\lim_{x\to 2} |1-3x|=5$.

42. Suppose that $|A - B| < \varepsilon$ for each $\varepsilon > 0$. Prove that A=B. HINT: Suppose that A \neq B and set $\varepsilon = \frac{1}{2}|A - B|$.

45. Proof that

$$\lim_{x \to c} f(x) = 0, \ iff \ \lim_{x \to c} |f(x)| = 0.$$

(2.2.10)

51. Give an ε , δ proof for the following statements. $\lim_{x\to 1} x^3 = 1$.

53. Give an ε , δ proof for the following statements. $\lim_{x\to 3^-} \sqrt{3-x} = 0$.

54. Prove that, for the function $g(x) = \begin{cases} x, & x \ rational \\ 0, & x \ irrational, \end{cases} \lim_{x \to 0} g(x) = 0.$

62. Prove that if $\lim_{x\to c} f(x) = L$, then there are positive numbers δ and B such that if $0<|x-c|<\delta$, then $|f(x)|<\mathrm{B}$.

【章節 2.3】

p.79 (6 \ 21 \ 33 \ 34 \ 38 \ 42~52 \ 55)

Exercises 5-38. Evaluate the limits that exist.

6.
$$\lim_{x\to 3} (5-4x)^2$$
.

21.
$$\lim_{x\to 4} \left(\frac{\sqrt{x}-2}{x-4}\right) .$$

33.
$$\lim_{x\to 1} \left(\frac{x^5-1}{x^4-1}\right)$$
.

34.
$$\lim_{h\to 0} h^2 \left(1 + \frac{1}{h}\right)$$
.

38.
$$\lim_{x \to -4} \left(\frac{2x}{x+4} - \frac{8}{x+4} \right)$$
.

42. Give that $f(x) = x^3$, evaluate the limits that exist.

(a)
$$\lim_{x \to 3} \frac{f(x) - f(3)}{x - 3}$$
.

(b)
$$\lim_{x \to 3} \frac{f(x) - f(2)}{x - 3}$$
.

(c)
$$\lim_{x\to 3} \frac{f(x)-f(3)}{x-2}$$
.

(d)
$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$$
.

43. Show by example that $\lim_{x\to c} [f(x)+g(x)]$ can exist even if $\lim_{x\to c} f(x)$ and

 $\lim_{x \to c} g(x) \text{ do not exist.}$

44. Show by example that $\lim_{x\to c} [f(x)g(x)]$ can exist even if $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ do not exist.

45. True or false? Justify your answers. If $\lim_{x\to c} [f(x)+g(x)]$ exists but $\lim_{x\to c} f(x)$

does not exist, then $\lim_{x\to c} g(x)$ does not exist.

46. True or false? Justify your answers. If $\lim_{x\to c} [f(x)+g(x)]$ and $\lim_{x\to c} f(x)$ exist,

then it can happen that $\lim_{x\to c} g(x)$ does not exist.

- 47. True or false? Justify your answers. If $\lim_{x\to c} \sqrt{f(x)}$ exists, then $\lim_{x\to c} f(x)$ exists.
- 48. True or false? Justify your answers. If $\lim_{x\to c} f(x)$ exists, then $\lim_{x\to c} \sqrt{f(x)}$ exists.
- 49. True or false? Justify your answers. If $\lim_{x\to c} f(x)$ exists, then $\lim_{x\to c} \frac{1}{f(x)}$ exists.
- 50. True or false? Justify your answers. If $f(x) \le g(x)$ for all $x \ne c$, then $\lim_{x \to c} f(x) \le \lim_{x \to c} g(x)$.
- 51. True or false? Justify your answers. If f(x) < g(x) for all $x \ne c$, then $\lim_{x \to c} f(x) < \lim_{x \to c} g(x)$.
- 52. (a) Verify that

$$\max\{f(x), g(x)\} = \frac{1}{2}\{[f(x) + g(x)] + |f(x) - g(x)|\}.$$

- (b) Find a similar expression for $min\{f(x), g(x)\}$.
- 55. (a) Suppose that $\lim_{x\to c} f(x) = 0$ and $\lim_{x\to c} [f(x)g(x)] = 1$. Prove that $\lim_{x\to c} g(x)$ does not exist.
- (b) Suppose that $\lim_{x\to c} f(x) = L \neq 0$ and $\lim_{x\to c} [f(x)g(x)] = 1$. Does $\lim_{x\to c} g(x)$ exist, and if so, what is it?
- ※補充題:Let $\lim_{x\to c} f(x)=5$ and $\lim_{x\to c} g(x)=1$. Using $\varepsilon-\delta$ argument to prove that $\lim_{x\to c} [3f(x)-g(x)]=14$, $2\lim_{x\to c} [2\,f(x)g(x)]=10$.

【章節 2.4】

p.88 (35 \ 37 \ 52 \ 53 \ 54 \ 55)

35. Let $f(x) = \begin{cases} x^2, & x < 1 \\ Ax - 3, & x \ge 1. \end{cases}$ Find A given that f is continuous at 1.

37. Give necessary and sufficient condition on A and B for the function

$$f(x) = \begin{cases} Ax - B, & x \le 1\\ 3x, & 1 < x < 2\\ Bx^2 - A, & 2 \le x \end{cases}$$

to be continuous at x=1 but discontinuous at x=2.

52. (a) Prove that if f is continuous everywhere, then |f| is continuous everywhere.

(b) Give an example to show that the continuity of |f| does not imply the continuity of f.

(c) Give an example of a function f such that f is continuous nowhere, but |f| is continuous everywhere.

53. Suppose the function f has the property that there exists a number B such that

$$|f(x) - f(c)| \le B|x - c|$$

for all x in the interval (c-p, c+p). Prove that f is continuous at c.

54. Suppose the function f has the property that

$$|f(x) - f(t)| \le |x - t|$$

for each pair of points x, t in the interval (a, b). Prove that f is continuous on (a, b).

55. Prove that if

$$\lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

exists, then f is continuous at c.

※補充題:Show that $f(x) = \sqrt[3]{x^2 + 2x} + \frac{|4x+5|}{x^2 - 2x + 1}$ is continuous everywhere except at x=1.

【章節 2.5】

Exercises 1-32. Evaluate the limits that exist.

6.
$$\lim_{x \to 0} \left(\frac{\sin 3x}{5x} \right) .$$

12.
$$\lim_{x\to 0} \left(\frac{\tan^2 3x}{4x^2}\right) .$$

$$18. \lim_{x \to 0} \left(\frac{x^2 - 2x}{\sin 3x} \right) .$$

43. Show that $\lim_{x\to 0} x \sin(1/x) = 0$. HINT: Use the pinching theorem.

46. Let f be the Dirichlet function

$$f(x) = \begin{cases} 1, & x \ rational \\ 0, & x \ irrational. \end{cases}$$

Show that $\lim_{x\to 0} xf(x)=0$.

47. Prove that if there is a number B such that $|f(x)| \le B$ for all $x\ne 0$, then $\lim_{x\to 0} xf(x)=0$.

NOTE: Exercises 43-46 are special cases of this general result.

49. Prove that if there is a number B such that $|f(x) - L|/|x - c| \le B$ for all $x \ne c$, then $\lim_{x\to c}f(x)=L.$

50. Given that $\lim_{x\to c} f(x) = 0$ and $|g(x)| \le B$ for all x in an interval (c-p, c+p), prove that $\lim_{x\to c} f(x)g(x) = 0$.

【章節 2.6】

p.100 (3 \ 11 \ 26 \ 28 \ 29)

Exercises 1-8. Use the intermediate-value theorem to show that there is a solution of the given equation in the indicated interval.

- 3. $\sin x + 2\cos x x^2 = 0$; $[0,\pi/2]$.
- 11. Show that the equation $x^3 4x + 2 = 0$ has three distinct roots in [-3,3] and locate the roots between consecutive integers.
- 26. Given that f and g are continuous on [a, b], that f(a) < g(a), and g(b) < f(b), show that there exist at least one number c in (a, b) such that f(c) = g(c). HINT: consider f(x) g(x).
- 28. Use the intermediate-value theorem to prove that every real number has a cube root. That is, prove that for any real number a there exists a number c such that $c^3=a$.
- 29. The intermediate-value theorem can be used to prove that each polynomial equation of odd degree $x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0=0$ with n odd has at least one real root. Show that the cubic equation $x^3+ax^2+bx+c=0$ has at least one real root.

※補充題:Let f be continuous on [a,b]. if $-\sqrt{3}, \frac{2}{3} \in f([a,b])$, then $[-\sqrt{3}, \frac{2}{3}] \subset f([a,b])$.

【章節 3.1】

Exercises 1-10. Differentiate the function by forming the difference quotient

$$\frac{f(x+h)-f(x)}{h}$$

And taking the limit as h tends to 0.

6.
$$f(x) = 1/(x+3)$$
.

Exercises 17-20. Write an equation for the tangent line at (c,f(c)).

19.
$$f(x) = 1/x^2$$
; $c = -2$.

Exercises 29-32 find f'(c) if it exist.

32.
$$f(x) = \begin{cases} -\frac{1}{2}x^2, x < 3\\ -3x, x \ge 3 \end{cases}$$
; $c = 3$.

40. Set
$$f(x) = \begin{cases} (x+1)^2, & x \le 0 \\ (x-1)^2, & x > 0. \end{cases}$$

- (a) Determine f'(x) for $x \neq 0$.
- (b) Show that f is not differentiable at x=0.

49. Set
$$f(x) = \begin{cases} x^2 - 2, & x \le 2\\ 2x - 2, & x > 2. \end{cases}$$

- (a) Show that f is continuous at 2.
- (b) Is f differentiable at 2?

59. Let
$$f(x) = \begin{cases} x \sin(1/x), & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 and $g(x) = xf(x)$. The graphs of f and g are

indicated in the figures below.

- (a) Show that f and g are both continuous at 0.
- (b) Show that f in not differentiable at 0.
- (c) Show that g is differentiable at 0 and give g'(0).

【章節 3.2】

p.122 (9 \ 14 \ 20 \ 28 \ 30 \ 66)

Exercises 1-20. Differentiate

9.
$$G(x) = (x^2 - 1)(x - 3)$$
.

14.
$$G(x) = \frac{7x^4 + 11}{x + 1}$$
.

20.
$$G(x) = (1 + \frac{1}{x})(1 + \frac{1}{x^2}).$$

28. Find f'(0) given that h(0)=3 and h'(0)=2. $f(x)=3x^2h(x)-5x$.

30. Find f'(0) given that h(0)=3 and h'(0)=2.
$$f(x)=h(x)+\frac{x}{h(x)}$$
.

66. Verify that, if f, g, h are differentiable, then (fgh)'(x) = f'(x)g(x)h(x) + f(x)g'(x)h(x) + f(x)g(x)h'(x). HINT: Apply the product rule to [f(x)g(x)]h(x).

【章節 3.3】

p.128 (14 \ 20 \ 26 \ 38 \ 56)

Exercises 11-22. Find the indicates derivative.

14.
$$\frac{d}{dx}[(2x^2+3x^{-1})(2x-3x^{-2})].$$

20.
$$\frac{d}{du}[u^2(1-u^2)(1-u^3)].$$

Exercises 23-26. Evaluate dy/dx at x=2.

26.
$$y = \frac{(x^2+1)(x^2-2)}{x^2+2}$$
.

Exercises 33-38. Find d^3y/dx^3 .

38.
$$y = \frac{x^4 + 2}{x}$$
.

56. Verify the identity $f(x)g''(x) - f''(x)g(x) = \frac{d}{dx}[f(x)g'(x) - f'(x)g(x)].$

【章節 3.4】

p.132 (6 · 7)

- 6. Find the values of x at which the rate of change of y = $x^3 12x^2 + 45x 1$ with respect to x is zero.
- 7. Find the rate or change of the volume of a sphere with respect to the radius r.

【章節 3.5】

p.138 (5 \ 7 \ 16 \ 24 \ 27 \ 44 \ 45 \ 60)

Exercises 1-6. Differentiate the function: (a) by expanding before differentiation, (b) by using the chain rule. Then reconcile your results.

5.
$$y = (x + x^{-1})^2$$
.

Exercises 7-20. Differentiate the function.

7.
$$f(x) = (1 - 2x)^{-1}$$
.

16.
$$f(x) = \left(\frac{4x+3}{5x-2}\right)^3$$
.

Exercises 21-24. Find dy/dx at x = 0.

24. y =
$$u^3 - u + 1$$
, u = $\frac{1-x}{1+x}$.

Exercises 27-28. Find dy/dx at x = 2.

27. y =
$$(s+3)^2$$
, $s = \sqrt{t-3}$, $t = x^2$.

44. Express the derivative in prime notation. $\frac{d}{dx} [f(\frac{x-1}{x+1})]$.

45. Express the derivative in prime notation. $\frac{d}{dx}[[f(x)]^2 + 1]$.

60. Let f and g be differentiable functions such that f'(x)=g(x) and g'(x)=f(x), and let $H(x)=[f(x)]^2-[g(x)]^2$. Find H'(x).

【章節 3.6】

Exercises 1-12. Differentiate the function.

12.
$$y = [x^2 - \sec 2x]^3$$
.

Exercises 13-24. Find the second derivative.

24.
$$y = sec^2x - tan^2x$$
.

Exercises 25-30. Find the indicated derivative.

27.
$$\frac{d}{dt}[t^2\frac{d^2}{dt^2}(t\cos 3t)].$$

55. It can be shown by induction that the nth derivative of the sine function is given by the formula

$$\frac{d^n}{dx^n}(\sin x) = \begin{cases} (-1)^{(n-1)/2} \cos x, & n \text{ odd} \\ (-1)^{n/2} \sin x, & n \text{ even.} \end{cases}$$

Persuade yourself that this formula is correct and obtain a similar formula for the nth derivative of the cosine function.

56. Verify the following differentiation formulas:

(a)
$$\frac{d}{dx}(\cot x) = -csc^2x$$
.

(b)
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$
.

(c)
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$
.

67. Set
$$f(x) = \begin{cases} x \sin(1/x), & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 and $g(x) = xf(x)$. In Exercise 62, Section 3.1, you

were asked to show that f is continuous at 0 but not differentiable there, and that g is differentiable at 0. Both f and g are differentiable at each $x \neq 0$.

- (a) Find f'(x) and g'(x) for $x \neq 0$.
- (b) Show that g' is not continuous at 0.

【章節 3.7】

Exercises 1-10. Use implicit differentiation to express dy/dx in terms of x and y.

- 10. $\tan xy = xy$.
- 18. Evaluate dy/dx and d^2y/dx^2 at the point indicated. $x^2 + 4xy + y^3 + 5 = 0$; (2,-1).
- 32. Find dy/dx. $y = \sqrt{(x^4 x + 1)^3}$.
- 34. Carry out the differentiation. $\frac{d}{dx}(\sqrt{\frac{3x+1}{2x+5}})$.
- 42. Find the second derivative. $y = \sqrt{x} \sin \sqrt{x}$.
- 48. Find the angles at which the circles $(x-1)^2 + y^2 = 10$ and $x^2 + (y-2)^2 = 5$ intersect.

【章節 4.1】

Exercises 1-4. Show that f satisfies the conditions of Rolle's theorem on the indicated interval and find all numbers c on the interval for which f'(c) = 0.

4.
$$f(x) = x^{2/3} - 2x^{1/3}$$
; [0,8].

- 9. Verify that f satisfies the conditions of the mean-value theorem on the indicated interval and find all numbers c that satisfy the conclusion of the theorem. $f(x) = \sqrt{1-x^2}$; [0, 1].
- 12. The function $f(x) = x^{2/3} 1$ has zeros at x=-1 and at x=1.
 - (a) Show that f' has no zeros in (-1, 1).
 - (b) Show that this does not contradict Rolle's theorem.
- 23. Show that the equation $6x^4 7x + 1 = 0$ does not have more than two distinct real roots.
- 25. Show that the equation $x^3 + 9x^2 + 33x 8 = 0$ has exactly one real root.
- 26. (a) Let f be differentiable on (a, b). Prove that if $f'(x) \neq 0$ for each $x \in (a, b)$, then f has at most one zero in (a, b).
- (b) Let f be twice differentiable on (a, b). Prove that if $f''(x) \neq 0$ for each $x \in (a, b)$, then f has at most two zeros in (a, b).
- 29. A number c is called a fixed point of f if f(c)=c. Prove that if f is differentiable on an interval I and f'(x)<1 for all $x\in I$, then f has at most one fixed point in I. HINT: form g(x)=f(x)-x.

- 35. Given that $|f'(x)| \le 1$ for all real numbers x, show that $|f(x_1) f(x_2)| \le |x_1 x_2|$ for all real numbers x_1 and x_2 .
- 39. Let f be differentiable on (a, b) and continuous on [a, b].
- (a) Prove that if there is a constant M such that $f'(x) \leq M$ for all $x \in (a, b)$, then $f(b) \leq f(a) + M(b-a)$.
- (b) Prove that if there is a constant m such that $f'(x) \ge m$ for all $x \in (a, b)$, then $f(b) \ge f(a) + m(b-a)$.
- (c) Parts (a) and (b) together imply that if there exists a constant K such that $|f'(x)| \le K$ on (a, b), then $f(a)-K(b-a) \le f(b) \le f(a)+K(b-a)$.
- 40. Suppose that f and g are differentiable functions and f(x)g'(x)-g(x)f'(x) has no zeros on some interval I. Assume that there are numbers a, b in I with a
b for which f(a)=f(b)=0, and that f has no zeros in (a, b). Prove that if $g(a)\neq 0$ and $g(b)\neq 0$, then g has exactly one zero in (a, b). HINT: Suppose that g has no zeros in (a, b) and consider h=f/g. Then consider k=g/f.
- 42. (*Important*) Use the mean-value theorem to show that if f is continuous at x and at x+h and is differentiable between these two numbers, then

$$f(x + h) - f(x) = f'(x + \theta h)h$$

for some number $\,\theta\,$ between 0 and 1. (In some texts this is how the mean-value theorem is stated.)

※補充題:Let f be differentiable on [a,b]. if f'(a)>0 and f'(b)<0, then there exists $c\in(a,b)$ such that f'(c)=0. (Do not assume that f' is continuous.)

【章節 4.2】

p.165 (15 \ 24 \ 30 \ 55 \ 56 \ 58)

Exercises 1-24. Find the intervals on which f increases and the intervals on which f decreases.

15.
$$f(x) = \frac{x-1}{x+1}$$
.

- 24. $f(x) = \sin^2 x \sqrt{3} \sin x$, $0 \le x \le \pi$.
- 30. Define f on the domain indicated given the following information.

$$(0,\infty)$$
; $f'(x) = x^{-5} - 5x^{-1/5}$; $f(1) = 0$.

- 55. Suppose that for all real x f'(x)=-g(x) and g'(x)=f(x).
 - (a) Show that $f^2(x) + g^2(x) = C$ for some constant C.
 - (b) Suppose that f(0)=0 and g(0)=1. What is C?

- (c) Give an example of a pair of functions that satisfy parts (a) and (b).
- 56. Assume that f and g are differentiable on the interval (-c, c) and f(0)=g(0).
 - (a) Show that if f'(x)>g'(x) for all $x\in(0, c)$, then f(x)>g(x) for all $x\in(0, c)$.
 - (b) Show that if f'(x)>g'(x) for all $x\in(-c, 0)$, then f(x)<g(x) for all $x\in(-c, 0)$.
- 58. Show that $1 x^2/2 < \cos x$ for all $x \in (0, \infty)$.

【章節 4.3】

p.173 (17 \ 20 \ 28 \ 32 \ 35 \ 39 \ 42)

Exercises 1-28. Find the critical points and the local extreme values.

17.
$$f(x) = x^2 \sqrt[3]{2 + x}$$
.

- 20. $f(x) = x^{7/3} 7x^{1/3}$.
- 28. $f(x) = 2\sin^3 x 3\sin x$, $0 < x < \pi$.
- 32. Prove the validity of the second-derivative test in the case that f''(c)<0.
- 35. Find the critical points and the local extreme values of the polynomial.

$$P(x) = x^4 - 8x^3 + 22x^2 - 24x + 4.$$

Show that the equation P(x) = 0 has exactly two real roots, both positive.

- 39. Find a and b given that $f(x) = ax/(x^2+b^2)$ has a local minimum at x = -2 and f'(0) = 1.
- 42. Let y=f(x) be differentiable and suppose that the graph of f does not pass through the origin. The distance D from the origin to a point P(x, f(x)) of the graph is given by $D = \sqrt{x^2 + [f(x)]^2}$. Show that if D has a local extreme value at c, then the line through (0, 0) and (c, f(c)) is perpendicular to the line tangent to the graph of f at (c, f(c)).

【章節 4.4】

Exercises 1-30. Find the critical points. Then find and classify all the extreme values.

4.
$$f(x) = 2x^2 + 5x - 1$$
, $x \in [-2,0]$.

11.
$$f(x) = \frac{x}{4+x^2}$$
, $x \in [-3,1]$.

14.
$$f(x) = x\sqrt{4 - x^2}$$
.

- 36. Let r be a rational number, r>1, and set $f(x) = (1 + x)^r (1 + rx)$ for $x \ge -1$. Show that 0 is a critical point for f and show that f(0)=0 is the absolute minimum value.
- 37. Suppose that c is a critical point for f and f'(x)>0 for $x \neq c$. Show that if f(c) is a local maximum, then f is not continuous at c.
- 39. Suppose that f is continuous on [a, b] and f(a)=f(b). Show that f has at least one critical point in (a, b).
- 40. Suppose that $c_1 < c_2$ and that f takes on local maxima at c_1 and c_2 . Prove that if f is continuous on $[c_1, c_2]$, then there is at least one point c in (c_1, c_2) at which f takes on a local minimum.

※補充題:

- I. Prove that $\lim_{x\to\infty} \left(\frac{1}{x^2}\right) = 0$.
- II. Prove that $\lim_{x \to -\infty} (\sqrt[3]{x}) = -\infty$.

【章節 4.5】

p.194(7 \ 40 \ 44 \ 46)

Exercises 5-22. Describe the concavity of the graph and find the points of inflection(if any)

7.
$$f(x) = x^3 - 3x + 2$$
.

- 40. Find c given that the graph of $f(x) = cx^2 + x^{-2}$ has a point of inflection at (1, f(1)).
- 44. Find necessary and sufficient conditions on A and B for $f(x) = Ax^2 + Bx + C$
 - (a) to decrease between A and B with graph concave up.
 - (b) to increase between A and B with graph concave down.
- 46. Set $f(x) = \sin x$. Show that the graph of f is concave down above the x-axis and concave up below the x-axis. Does $g(x) = \cos x$ have the same property?

【章節 4.8】

p.208(4 \ 14 \ 21)

Exercises 1-54. Sketch the graph of the function using the approach presented in this section.

4.
$$f(x) = x^3 - 9x^2 + 24x - 7$$
.

14.
$$f(x) = \frac{1}{4}x - \sqrt{x}, x \in [0,9].$$

21.
$$f(x) = \frac{x^2}{x^2+4}$$
.

※補充題:Let f: (a,b) → \mathbb{R} be twice differentiable. If f">0 on (a,b), then the graph of y = f(x) lies above any of its tangent line.

【章節 5.2】

p.245 (12 \ 15 \ 17 \ 21 \ 23 \ 31 \ 39)

- 12. (a) Given that $P = \{x_0, x_1, ..., x_n\}$ is an arbitrary partition of [a,b], find $L_f(P)$ and $U_f(P)$ for f(x) = x + 3.
 - (b) Use your answers to part (a) to evaluate $\int_a^b f(x) dx$.

Exercises 15-18. Express the limit as a definite integral over the indicated interval. 15.

$$\lim_{\|P\|\to 0} \left[(x_1^2 + 2x_1 - 3)\Delta x_1 + (x_2^2 + 2x_2 - 3)\Delta x_2 + \dots + (x_n^2 + 2x_n - 3)\Delta x_n \right]; \quad [-1,2]$$
17.

$$\lim_{\|P\|\to 0} \left[(t_1^*)^2 \sin(2t_1^*+1) \Delta t_1 + (t_2^*)^2 \sin(2t_2^*+1) \Delta t_2 + \dots + (t_n^*)^2 \sin(2t_n^*+1) \Delta t_n \right]$$

Where $t_i^* \in [t_{i-1}, t_i]$, i = 1, 2, ..., n; $[0, 2\pi]$

21. Let
$$f(x) = 2x, x \in [0,1]$$
. Take $P = \{0, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\}$ and set $x_1^* = \frac{1}{16}, x_2^* = \frac{1}{16}$

$$\frac{3}{16}$$
, $x_3^* = \frac{3}{8}$, $x_4^* = \frac{5}{8}$, $x_5^* = \frac{3}{4}$. Calculate the following:

(a)
$$L_f(P)$$
. (b) $S^*(P)$. (c) $U_f(P)$.

23. Evaluate $\int_0^1 x^3 dx$ using upper and lower sums. HINT: $b^4 - a^4 = (b^3 + b^2 a + b^2 a)$

$$ba^2 + a^3)(b - a).$$

31. A partition $P=\{x_0, x_1, x_2, \cdots, x_{n-1}, x_n\}$ of [a, b] is said to be regular if the subintervals $[x_{i-1}, x_i]$ all have the same length $\Delta x = (b-a)/n$. Let

 $P=\{x_0,x_1,x_2,\cdots,x_{n-1},x_n\}$ be a regular partition of [a, b]. Show that if f is continuous and increasing on [a, b], then $U_f(P)-L_f(P)=[f(b)-f(a)]\Delta x$.

39. Let f be a function continuous on [a, b]. Show that if P is a partition of [a, b], then

 $L_f(P)$, $U_f(P)$, and $\frac{1}{2}[L_f(P) + U_f(P)]$ are all Riemann sums.

【章節 5.3】

p.252 (1 \ 3 \ 29 \ 31 \ 35 \ 36)

1. Given that $\int_0^1 f(x)dx = 6$, $\int_0^2 f(x)dx = 4$, $\int_2^5 f(x)dx = 1$,

find the following:

(a)
$$\int_0^5 f(x) dx$$
. (b) $\int_1^2 f(x) dx$. (c) $\int_1^5 f(x) dx$.

(d)
$$\int_0^0 f(x) dx$$
. (e) $\int_2^0 f(x) dx$. (f) $\int_5^1 f(x) dx$.

- 3. Use upper and lower sums to show that $0.5 < \int_1^2 \frac{dx}{x} < 1$.
- 29. Set $F(x) = 2x + \int_0^x \frac{\sin 2t}{1+t^2} dt$. Determine

- 31. Assume that f is continuous and $\int_0^x f(t)dt = \frac{2x}{4+x^2}$.
 - (a) Determine f(0).
 - (b) Find the zeros of f, if any.
- 35. Let f be continuous on [a, b]. For each $x \in [a, b]$ set $F(x) = \int_{c}^{x} f(t) dt$, and
- $G(x) = \int_{d}^{x} f(t)dt$ taking c and d from [a, b].
 - (a) Show that F and G differ by a constant.
 - (b) Show that $F(x)-G(x)=\int_{c}^{d} f(t)dt$.

36. Let f be everywhere continuous and set
$$F(x) = \int_0^x [t \int_1^t f(u) du] dt$$
. Find (a) $F'(x)$. (b) $F'(1)$. (c) $F''(x)$. (d) $F''(1)$. p.284 (16 \cdot 24)

- 16. Derive a formula for $\frac{d}{dx}(\int_{u(x)}^b f(t)dt)$ given that u is differentiable and f is continuous.
- 24. Show that $\frac{d}{dx} \left(\int_{u(x)}^{v(x)} f(t) dt \right) = f(v(x))v'(x) f(u(x))u'(x)$ given that u and v are differentiable and f is continuous.

※補充題:Let
$$f(x) = \int_{x^2+2x}^{\sec x^2} (t^3 - \frac{1}{t} + 2) dt$$
. Find $f'(x)$.

【章節 5.4】

- 8. Evaluate the integral $\int_{1}^{2} \left(\frac{3}{x^3} + 5x\right) dx$.
- 14. Evaluate the integral $\int_0^1 (x^{3/4} 2x^{1/2}) dx$.
- 16. Evaluate the integral $\int_0^a (a^2x x^3) dx$.
- 26. Evaluate the integral $\int_{\pi/6}^{\pi/3} \sec x \tan x \, dx$.
- 32. Evaluate the integral $\int_{\pi/4}^{\pi/2} \csc x (\cot x 3 \csc x) dx$.
- 49. Determine whether the calculation is valid. If it is not valid, explain why it is not valid. $\int_0^{2\pi} x \cos x \, dx = [x \sin x + \cos x]_0^{2\pi} = 1 1 = 0.$
- 61. (Important) If f is a function and its derivative f' is continuous on [a, b], then $\int_a^b f'(t)dt = f(b) f(a).$ Explain the reasoning here.
- 62. Let f be a function such that f' is continuous on [a, b]. Show that

$$\int_{a}^{b} f(t)f'(t)dt = \frac{1}{2}[f^{2}(b) - f^{2}(a)].$$

63. Given that f has a continuous derivative, compare $\frac{d}{dx}[\int_a^x f(t)dt]$ to

$$\int_{a}^{x} \frac{d}{dt} [f(t)] dt.$$

64. Given that f is a continuous function, set $F(x) = \int_0^x x f(t) dt$. Find F'(x). HINT:

The answer is not xf(x).

- 15. Suppose that f has a continuous derivative on [a, b]. What is the average value of f' on [a, b]?
- 20. Let f be continuous. Show that, if f is an odd function, then its average value on every interval of the form [-a, a] is zero.
- 21. Suppose that f is continuous on [a, b] and $\int_a^b f(x)dx = 0$. Prove that there is at least one number c in (a, b) for which f(c)=0.
- 22. Show that the average value of the functions $f(x) = \sin \pi x$ and $g(x) = \cos \pi x$ is zero on every interval of length 2n, n a positive integer.

【章節 5.5】

p.265 (5 \ 22 \ 27 \ 29 \ 35)

- 5. Find the area between the graph of f and the x-axis. $f(x)=(2x^2+1)^2$, $x \in [0, 1]$.
- 22. Sketch the region bounded by the curves and find its area. $y = x^2$, $y = -\sqrt{x}$, x = 4.
- 27. The graph of $f(x) = x^2 x 6$ is shown in the accompanying figure.
- (a) Evaluate $\int_{-3}^{4} f(x) dx$ and interpret the result in terms of areas,
- (b) Find the area between the graph of f and the x-axis from x=-3 to x=4,
- (c) Find the area between the graph of f and the x-axis from x=-2 to x=3.

- 29. Set $f(x)=x^3 x$.
- (a) Evaluate $\int_{-2}^{2} f(x) dx$.
- (b) Sketch the graph of f and find the area between the graph and the x-axis from x=-2 to x=2.
- 35. Sketch the region bounded by the x-axis and the curves $y = \sin x$ and $y = \cos x$ with $x \in [0, \pi/2]$, and find its area.

【章節 5.6】

p.273 (10 \ 26 \ 33)

- 10. Calculate $\int (t^2 a)(t^2 b)dt$.
- 26. Find f from the information given. $f''(x) = -12x^2$, f(0) = 1, f(0) = 2.
- 33. Compare $\frac{d}{dx} [\int f(x) dx]$ to $\int \frac{d}{dx} [f(x)] dx$.

※補充題:

① Show that
$$\int \frac{\sin x^2 - 2x^2 \cos x^2}{\sin^2 x^2} dx = \frac{x}{\sin x^2} + c$$
.

$$2 \int [f(x)g''(x) - f''(x)g(x)] dx = f(x)g'(x) - f'(x)g(x) + c$$

【章節 5.7】

- 1. Calculate $\int \frac{dx}{(2-3x)^2}$.
- 2. Calculate $\int \frac{dx}{\sqrt{2x+1}}$.
- 10. Calculate $\int x^{n-1} \sqrt{a + bx^n} dx$.
- 22. Evaluate $\int_{-1}^{0} 3x^2(4+2x^3)^2 dx$.
- 26. Evaluate $\int_{-a}^{0} y^2 (1 \frac{y^3}{a^2})^{-2} dy$.
- 31. Calculate $\int x\sqrt{x+1}dx$. [set u=x+1]
- 47. Calculate $\int \cos^4 x \sin x \, dx$.
- 49. Calculate $\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$.
- 56. Calculate $\int (1 + tan^2 x) sec^2 x dx$.
- 58. Calculate $\int x \sin^4(x^2 \pi) \cos(x^2 \pi) dx.$
- 63. Calculate $\int x^2 \tan(x^3 + \pi) sec^2(x^3 + \pi) dx$.
- 68. Evaluate $\int_0^1 \cos^2 \frac{\pi}{2} x \sin \frac{\pi}{2} x \, dx.$
- 73. Calculate $\int cos^2 5x dx$.
- 84. Let f be a continuous function, c a real number. Show that

(a)
$$\int_{a+c}^{b+c} f(x-c) dx = \int_{a}^{b} f(x) dx$$
,

and, if $c \neq 0$.

(b)
$$\frac{1}{c} \int_{ac}^{bc} f(x/c) dx = \int_{a}^{b} f(x) dx.$$

【章節 5.8】

p.284 (30 \ 33 \ 34)

30. (Important) Prove that, if f is continuous on [a, b] and $\int_a^b |f(x)| dx = 0$, then

f(x)=0 for all x in [a, b]. HINT: Exercise 50, Section 2.4.

33. (a) Let f be continuous on [-a, 0]. Use a change of variable to show that

$$\int_{-a}^{0} f(x)dx = \int_{0}^{a} f(-x)dx.$$

- (b) Let f be continuous on [-a, a]. Show that $\int_{-a}^{a} f(x)dx = \int_{0}^{a} [f(x) + f(-x)]dx$.
- 34. Let f be a function continuous on [-a, a]. Prove the statement basing your argument on Exercise 33.

(a)
$$\int_{-a}^{a} f(x)dx = 0$$
 if f is odd.

(b)
$$\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx$$
 if f is even.

【章節 7.1】

31. Sketch the graph of the inverse of the function graphed below.

- 32. (a) Show that the composition of two one-to-one functions, f and g , is one-to-one.
 - (b) Express $(f \circ g)^{-1}$ in terms of f^{-1} and g^{-1} .
- 33. (a) Let $f(x) = \frac{1}{3}x^3 + x^2 + kx$, k a constant. For what values of k is f one-to-one?
 - (b) Let $g(x)=x^3+kx^2+x$, k a constant. For what values of k is g one-to-one?
- 34. (a) Suppose that f has an inverse, f(2)=5, and f'(2)= $-\frac{3}{4}$. What is $(f^{-1})'(5)$?
 - (b) Suppose that f has an inverse, f(2)=-3, and $f'(2)=\frac{2}{3}$. If $g=1/f^{-1}$, what is g'(-3)?
- 42. Verify that f has an inverse and find $(f^{-1})'(c)$. $f(x) = x^5 + 2x^3 + 2x$; c=-5.
- 46. Find a formula for $(f^{-1})'(x)$ given that f is one-to-one and its derivative satisfies the equation given. $f'(x) = 1 + [f(x)]^2$.
- 49. Let $f(x) = \frac{ax+b}{cx+d}$
 - (a) Show that f is one-to-one iff ad-bc \neq 0.
 - (b) Suppose that ad-bc \neq 0. Find f^{-1} .
- 52. Set $f(x) = \int_1^{2x} \sqrt{16 + t^4} dt$.
 - (a) Show that f has an inverse.
 - (b) Find $(f^{-1})'(0)$.
- 53. Let f be a twice differentiable one-to-one function and set $g=f^{-1}$.
 - (a) Show that $g''(x) = -\frac{f''[g(x)]}{(f'[g(x)])^3}$.
- (b) Suppose that the graph of f is concave up (down). What can you say then about the graph of f^{-1} ?

【章節 7.2】

p.346 (22 × 23 × 24 × 25)

- 22. Solve the equation for x. $2\ln(x+2) \frac{1}{2}\ln x^4 = 1$.
- 23. Show that $\lim_{x\to 1} \frac{\ln x}{x-1} = 1$. HINT: Note that $\frac{\ln x}{x-1} = \frac{\ln x \ln 1}{x-1}$ and interpret the limit as a derivative.
- 24. Let n be a positive integer greater than 2. Draw relevant figures. Find the greatest integer k for which $\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k} < \ln n$.
- 25. Let n be a positive integer greater than 2. Draw relevant figures. Find the least integer k for which $\ln n < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k}$.

【章節 7.3】

p.354 (8 \ 12 \ 14 \ 22 \ 23 \ 24 \ 27 \ 31 \ 32 \ 33 \ 34)

- 8. Determine the domain and find the derivative. $f(x) = \ln(\ln x)$.
- 12. Determine the domain and find the derivative. $f(x) = \ln \sqrt[4]{x^2 + 1}$.
- 14. Determine the domain and find the derivative. $f(x) = \cos(\ln x)$.
- 22. Calculate $\int \frac{csc^2x}{2+\cot x} dx$.
- 23. Calculate $\int \frac{x}{(3-x^2)^2} dx$.
- 24. Calculate $\int \frac{\ln(x+a)}{x+a} dx$.
- 27. Calculate $\int \frac{1}{x \ln x} dx$.
- 31. Calculate $\int \frac{\sin x \cos x}{\sin x + \cos x} dx$.
- 32. Calculate $\int \frac{1}{\sqrt{x}(1+\sqrt{x})} dx$. HINT: Set u=1+ \sqrt{x} .
- 33. Calculate $\int \frac{\sqrt{x}}{1+x\sqrt{x}} dx$.
- 34. Calculate $\int \frac{\tan(\ln x)}{x} dx$.

【章節 7.4】

p.362 (18 \ 24 \ 31 \ 40 \ 41 \ 42 \ 47 \ 49 \ 72)

18. Differentiate $y = \frac{e^{2x} - 1}{e^{2x} + 1}$.

24. Differentiate $f(x) = \ln(\cos e^{2x})$

31. Calculate $\int \frac{e^{1/x}}{x^2} dx$.

40. Calculate $\int \frac{\sin(e^{-2x})}{e^{2x}} dx$.

41. Calculate $\int \cos x e^{\sin x} dx$.

42. Calculate $\int e^{-x} [1 + \cos(e^{-x})] dx$.

47. Evaluate $\int_0^1 \frac{e^{x+1}}{e^x} dx.$

49. Evaluate $\int_0^{\ln 2} \frac{e^x}{e^x + 1} dx.$

72. Prove that for all x>0 and all positive integers n

$$e^x > 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$$

Recall that $n! = n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1$.

HINT: $e^x = 1 + \int_0^x e^t dt > 1 + \int_0^x dt = 1 + x$

 $e^x = 1 + \int_0^x e^t dt > 1 + \int_0^x (1+t)dt = 1 + x + \frac{x^2}{2}$, and so on.

【章節 7.7】

p.385 (6 · 8 · 18 · 24 · 25 · 35 · 36 · 45 · 47 · 48 · 49 · 50 · 53 · 57 · 61)

6. Determine the exact value. (a) $\sin^{-1}(\sin[11\pi/6])$; (b) $\tan^{-1}(\tan[11\pi/4])$.

8. Determine the exact value. (a) $\cos(\sin^{-1}[\frac{3}{5}])$; (b) $\sec(\tan^{-1}[\frac{4}{3}])$.

18. Differentiate $v = \tan^{-1} e^x$.

24. Differentiate $g(x)=\sec^{-1}(\cos x + 2)$.

25. Differentiate $\theta = \sin^{-1}(\sqrt{1-r^2})$.

35. Calculate $\int \frac{1}{\sqrt{a^2 - (x+b)^2}} dx$ taking a>0. HINT: Set au=x+b.

36. Calculate $\int \frac{1}{a^2 + (x+b)^2} dx$ taking a>0.

45. Evaluate
$$\int_0^{3/2} \frac{dx}{9+4x^2}$$
.

47. Evaluate
$$\int_{3/2}^{3} \frac{dx}{x\sqrt{16x^2-9}}$$
.

48. Evaluate
$$\int_{4}^{6} \frac{dx}{(x-3)\sqrt{x^2-6x+8}}$$
.

49. Evaluate
$$\int_{-3}^{-2} \frac{dx}{\sqrt{4-(x+3)^2}}$$
.

50. Evaluate
$$\int_{\ln 2}^{\ln 3} \frac{e^x}{\sqrt{1 - e^{-2x}}} dx.$$

53. Calculate
$$\int \frac{x}{\sqrt{1-x^4}} dx$$
.

57. Calculate
$$\int \frac{sec^2x}{9+tan^2x} dx$$
.

61. Calculate
$$\int \frac{dx}{x\sqrt{1-(\ln x)^2}}.$$

【章節 8.1】

※補充題:①
$$\int \frac{dx}{\sqrt{3-4x^2}} = ?$$
 ② $\int \frac{dx}{\sqrt{e^{2x}-6}} = ?$ ③ $\int \frac{dx}{\sqrt{4x-x^2}} = ?$ ④ $\int \frac{dx}{4x^2+4x+2} = ?$

【章節 8.2】

- 4. Calculate $\int x \ln x^2 dx$.
- 7. Calculate $\int \frac{x^2}{\sqrt{1-x}} dx$.
- 21. Calculate $\int x^2 (x+1)^9 dx$.
- 29. Calculate $\int x^3 \sin x^2 dx$.
- 32. Calculate $\int \frac{\sin^{-1} 2x}{\sqrt{1-4x^2}} dx.$
- 33. Calculate $\int_0^1 x \tan^{-1} x^2 dx$.
- 38. Calculate $\int \cos(\ln x) dx$. HINT: Integrate by parts twice.
- 40. Calculate $\int_{1}^{2e} x^{2} (\ln x)^{2} dx$.

- 45. Derive the following formula $\int e^{ax} \sin bx \, dx = \frac{e^{ax}(a \sin bx b \cos bx)}{a^2 + b^2} + C.$
- 68. Let n be a positive integer. Show that $\int (\ln x)^n dx = x(\ln x)^n n \int (\ln x)^{n-1} dx$.

The formula given in Exercise 67 reduces the calculation of $\int x^n e^{ax} dx$ to the calculation of $\int x^{n-1} e^{ax} dx$. The formula given in Exercise 68 reduces the calculation of $\int (\ln x)^n dx$ to the calculation of $\int (\ln x)^{n-1} dx$. Formulas (such as these) which reduce the calculation of an expression in n to the calculation of the corresponding expression in n-1 are called reduction formulas.

- 74. If P is a polynomial of degree k, then $\int P(x)e^x dx = [P(x) P'(x) + \cdots \pm P^{(k)}(x)]e^x + C$. Verify this statement. For simplicity, take k=4.
- 76. Use integration by parts to show that if f has an inverse with continuous first derivative, then $\int f^{-1}(x)dx = xf^{-1}(x) \int x(f^{-1})'(x)dx$.
- 77. Show that if f and g have continuous second derivatives and

$$f(a)=g(a)=f(b)=g(b)=0$$
, then $\int_{a}^{b} f(x)g''(x)dx = \int_{a}^{b} g(x)f''(x)dx$.

- 78. You are familiar with the identity $f(b) f(a) = \int_a^b f'(x) dx$.
- (a) Assume that f has a continuous second derivative. Use integration by parts to derive the identity $f(b) f(a) = f'(a)(b-a) \int_a^b f''(x)(x-b)dx$.
- (b) Assume that f has a continuous third derivative. Use the result in part (a) and integration by parts to derive the identity $f(b) f(a) = f'(a)(b-a) + \frac{f''(a)}{2}(b-a)$

$$a)^{2} - \int_{a}^{b} \frac{f'''(x)}{2} (x-b)^{2} dx.$$

Going on in this manner, we are led to what are called Taylor series (Chapter 12).

【章節 8.3】

p.415 (2 · 8 · 16 · 27 · 29 · 31 · 33 · 34 · 37 · 42 · 44)

- 2. Calculate $\int_0^{\pi/8} \cos^2 4x dx$. (If you run out of ideas, use the examples as models.)
- 8. Calculate $\int sin^2xcos^4xdx$. (If you run out of ideas, use the examples as models.)
- 16. Calculate $\int_0^{\pi/2} \cos 2x \sin 3x \, dx$. (If you run out of ideas, use the examples as models.)
- 27. Calculate $\int \sin 5x \sin 2x \, dx$. (If you run out of ideas, use the examples as models.)
- 29. Calculate $\int sin^{5/2} x \cos^3 x dx$. (If you run out of ideas, use the examples as models.)
- 31. Calculate $\int tan^5 3x dx$. (If you run out of ideas, use the examples as models.)
- 33. Calculate $\int_{-1/6}^{1/3} sin^4 3\pi x cos^3 3\pi x dx$. (If you run out of ideas, use the examples as models.)
- 34. Calculate $\int_0^{1/2} \cos \pi x \cos \frac{1}{2} \pi x \, dx$. (If you run out of ideas, use the examples as models.)
- 37. Calculate $\int tan^4xsec^4xdx$. (If you run out of ideas, use the examples as models.)
- 42. Calculate $\int_{\pi/4}^{\pi/2} csc^3x \cot x \, dx$ (If you run out of ideas, use the examples as models.)
- 44. Calculate $\int_0^{\pi/3} \tan x \sec^{3/2} x dx$ (If you run out of ideas, use the examples as models.)

【章節 8.4】

p.421 (13 \ 14 \ 21 \ 26 \ 31 \ 32)

13. Calculate
$$\int_0^5 x^2 \sqrt{25 - x^2} dx$$
.

14. Calculate
$$\int \frac{\sqrt{1-x^2}}{x^4} dx$$
.

21. Calculate
$$\int \frac{dx}{x^2 \sqrt{a^2 + x^2}}$$
.

26. Calculate
$$\int \frac{e^x}{\sqrt{9-e^{2x}}} dx$$
.

31. Calculate
$$\int x \sqrt{6x - x^2 - 8} dx$$
.

32. Calculate
$$\int \frac{x+2}{\sqrt{x^2+4x+1}} dx$$
.

【章節 8.5】

11. Calculate
$$\int \frac{2x^4 - 4x^3 + 4x^2 + 3}{x^3 - x^2} dx$$
.

20. Calculate
$$\int \frac{2x-1}{(x+1)^2(x-2)^2} dx$$
.

23. Calculate
$$\int \frac{x^3 + 4x^2 - 4x - 1}{(x^2 + 1)^2} dx$$
.

28. Calculate
$$\int \frac{1}{(x-1)(x^2+1)^2} dx.$$

34. Evaluate
$$\int_0^2 \frac{x^3}{(x^2+2)^2} dx$$
.