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Quantum theory begins with the Planck radiation law for thermal radi-
ation at di↵erent frequencies,
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where u
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is the spectral density defined as the radiated energy per unit
volume per unit frequency range. For a given temperature ⌧ , the spectral
density for large frequency is exponentially suppressed, u

!

⇠ !3e�~!/⌧ , and
save us from the famous ultraviolet catastrophe in classical theory.

• photons: quantization of electromagnetic fields

The Planck radiation law can explained by the quantization of electromag-
netic fields, i.e. the photons. According to Maxwell equations, the Hamilto-
nian for electromagnetic fields in vacuum is
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It is convenient to decompose the fields into their Fourier components,E(r) =
(1/

p
V )

P
k E(k)ek·r and the same relation for the magnetic field. Because

the field is real, its Fourier components are related, E(�k) = E⇤(k). Af-
ter some algebra, the above integral can be turned into summation over all
possible wave numbers k,
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This is still classical – we just look at the same Hamiltonian at a di↵erent
angle. In quantum theory, the fields E(k) andB(k) are operators and do not
commute with each other, i.e. there is uncertainty relation between them.

Though not completely correct, it is inspiring to compare the above
Hamiltonian with the simple harmonic oscillator, H = 1
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similarity is clear. Loosely speaking, E(k) and B(k) can be viewed as con-
jugate variables to each other, just like x and p. The analogy turns out
to be correct by the more advanced theory named quantum electrodynam-
ics (QED) and the Hamiltonian can be expressed in terms of two pairs of
creation/annihilation operators,
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where !
k

= c|k| = ck is the dispersion relation in vacuum. The two distinct
sets of creation/annihilation operators arise from two polarizations at each
wave number. Because the number operator b†

�kb�k takes on integer values,
the energy is quantized in units of ~!

k

,
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where n
�k = 0, 1, 2, ... are integers. The energy quantization of the elec-

tromagnetic fields was first proposed by Einstein with the groundbreaking
notion of photons (originally named as light quanta).

• Planck distribution function

Let us study the thermodynamics of a single mode with frequency ! first,
i.e. just one type of photons with energy n~!, where n = 0, 1, 2, ... is the
photon number. The partition is rather straightforward to compute,

Z = 1 + e�~!/⌧ + e�2~!/⌧ + · · · = 1
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The average energy of the photon system in thermal equilibrium is
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In the high temperature limit, ~! ⌧ ⌧ , the average energy h✏i ⇡ ⌧ as
described by the equipartition of energy in the classical regime. Because
each photon carries energy quantum ~!, the average number of photons in
thermal equilibrium is

hni = h✏i
~! =

1
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, (8)

known as the Planck distribution function. At a given temperature ⌧ ,
the average number of the low-frequency (~! ⌧ ⌧) photons is huge, hni ⇡
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⌧/(~!) � 1. On the other hand, the average number of the high-frequency
(~! � ⌧) photons is exponentially suppressed, hni ⇡ e�~!/⌧ ⌧ 1. One
should not worry about the seemingly divergent photon number for the low
frequency, hni ⇡ ⌧/(~!), because the corresponding energy quantum ~! is
minuscule and cancels the divergent photon number when computing the
average energy.

• mode counting for di↵erent wave numbers

To derive the Planck radiation law, we need to count the modes for di↵erent
wave numbers properly. For electromagnetic fields confined within a perfectly
conducting cubic cavity (of length L), the wave number is quantized,
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The corresponding frequency from the linear dispersion is
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where n =
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z

. The quantization of the wave number should
not be confused with the energy quantization of photons. It arises from the
boundary conditions and already shows up even in classical theory.

In the thermodynamic limit L ! 1, the adjacent wave numbers are
infinitesimally close to each other. Therefore, one can replace the discrete
sum by an integral in the space of wave numbers,

X

k

(· · · ) =
X

n

(· · · ) = 1

8

Z 1

0

4⇡n2dn(· · · ), (11)

where 1/8 arises because only the positive octant of the space is included.

• Planck radiation law for the spectral density

We are now ready to derive the Planck radiation law. The total energy of
the photons in the cavity is
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where !
k

= ck = n⇡c/L and the factor of two comes from two polarizations
for each wave number. Replacing the sum by the integral leads to
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with the volume V = L3. The spectral density u
!

is defined as the energy
per unit volume per unit frequency range,
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By comparison, the spectral density is given by the Planck radiation law,
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This frequency distribution of thermal radiation is the direct consequence of
photons in thermal equilibrium and can be measured experimentally.

Carrying out the integration over frequency, the total energy of the pho-
tons in cavity is
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The radiant energy per unit volume is proportional to the fourth power of
the temperature is known as the Stefan-Boltzmann law of radiation. It is
important to emphasize that the proportional constant ⇡2/(15~3c3) contains
the Planck constant and cannot be explained by the classical theory at all.

• Einstein’s A and B

Einstein cooked up a smart way to derive the Planck radiation law by detailed
balance in thermal equilibrium. Consider two energy levels for electrons with
energies E

a

and E
b

and E
a

� E
b

= ~! > 0. The occupation numbers for
the energy levels are denoted by n

a

, n
b

respectively. When an electron hops
from the higher energy level to the lower one, it emits a photon with energy
~! = E

a

� E
b

. On the other hand, an electron can also absorb a photon
and jump from the lower energy level to the higher one. Einstein assumed
that there are two kinds of emission precesses: the spontaneous emissions
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characterized by a constant A and the stimulated emissions characterized
by Bu

!

, where B is another constant. The appearance of u
!

is reasonable
because the strength of stimulation should be proportional to the energy
density of the corresponding frequency, i.e. the spectral density u

!

. On
the other hand, absorptions only occur when photons are around. That
is to say, there is only stimulated absorption. Einstein assumed that the
stimulated absorptions are also characterized by the same factor Bu

!

, as in
the stimulated emissions. The above arguments lead to the following rate
equations for the occupation numbers:
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In thermal equilibrium, the occupation numbers do not change with time.
The detailed balance between the transfer rates implies the relation to hold,
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Note that the occupation number are related by the Boltzmann factor in
thermal equilibrium,
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It is then straightforward to solve for the spectral density,
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This simple theory is consistent with the Planck radiation law with the ratio
A/B needed to be computed from the microscopic quantum theory.

• cosmic microwave background

It is quite a surprise that our universe is filled with almost uniform and
isotropic black-body radiation at about 2.73 K. The existence of this radiation
is a strong support for big bag theory, which predicts that the universe is
expanding and thus cooling down with time. According to the big bang
theory, the temperature of the early universe is quite high and the matter
exists primarily in the form of plasma (charged electrons and protons) which
interacts strongly with photons. It is this reasonable to assume that photons
reach thermal equilibrium through interactions with charged particles.
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As the universe cools down to about 3000 K, neutral hydrogen atoms are
stable and only interact with photons at the frequencies of specific hydrogen
spectral lines. The photons are e↵ectively decoupled from the matter with
spectral density captured by the Planck radiation law. Because there is no
hear transfer into the equilibrated photon gas, the entropy remains constant.
Starting from the di↵erential relation ⌧d� = dU at constant volume,

d� =
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⌧
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15~3c3V ⌧ 2d⌧. (22)

Integrate the above relation to obtain the entropy for the photon gas,
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As the universe expands, the volume V increases and the temperature drops
as 1/V 1/3. The measured Planck radiation law at 2.73 K is the cooled equili-
brated photon gas, originally at the decoupling temperature around 3000 K,
after isentropic expansion.


