歡迎

蒞臨台電核二廠

清大多訪核二廠行程表

101年01月16日(星期一)

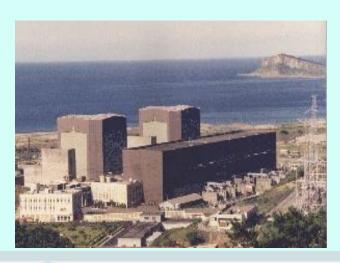
時間	活動項目	地點
09:30~10:00	抵達核二廠 及 參觀出水口	出水口
10:00~10:50	電廠主管致歡迎詞 及 電廠簡報	北展館
10:50~12:10	赴反應器頂樓現場參觀	2號機七樓
12:10~13:00	北展館午餐	北展館
13:00~13:30	模擬器參觀	模擬中心
13:30~14:10	北展館導覽	北展館
14:10~15:00	參觀廢料倉庫 及 快樂賦歸	廢料倉庫

安全營運 穩定進步

- 核能發電現況與努力 -

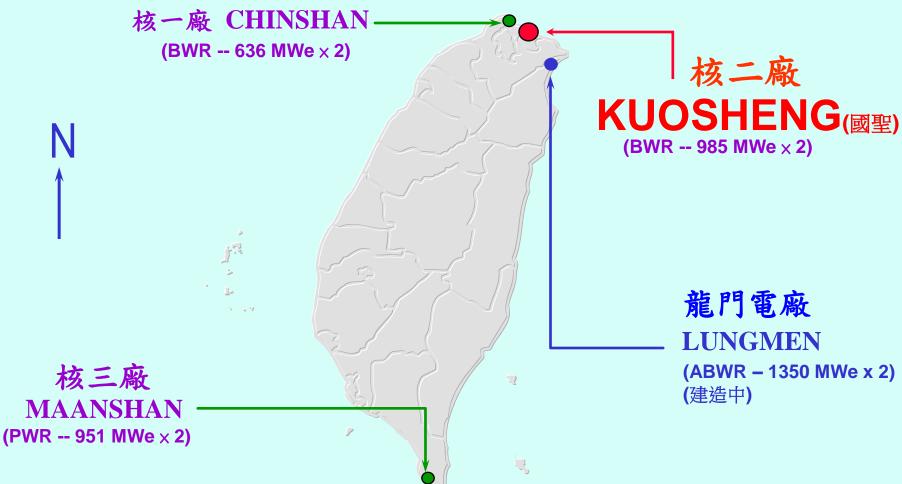


核技組 林志保 101年 01月16日

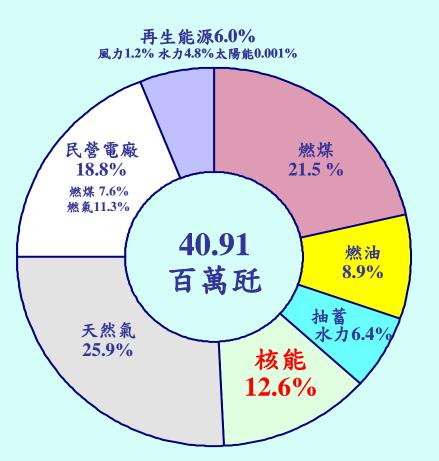


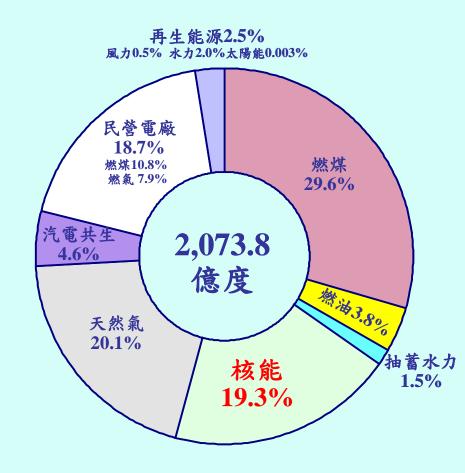
內容大綱

壹、核二廠概況 貳、核能整體營運績效 冬、高低階廢料處理策略 肆、環境保護與敦親睦鄰 伍、核電現況與未來 陸、因應日本核災作法



核二廠概況 壹、


台電公司 各核能發電廠



99年台灣電力系統結構

裝置容量

發購電量

第二核能發電廠

•廠址:新北市萬里區野柳里八斗60號

•主要設備:

反應爐

汽輪發電機

•建廠時程:

一號機

二號機

奇異公司第六代沸水式 (BWR-6)

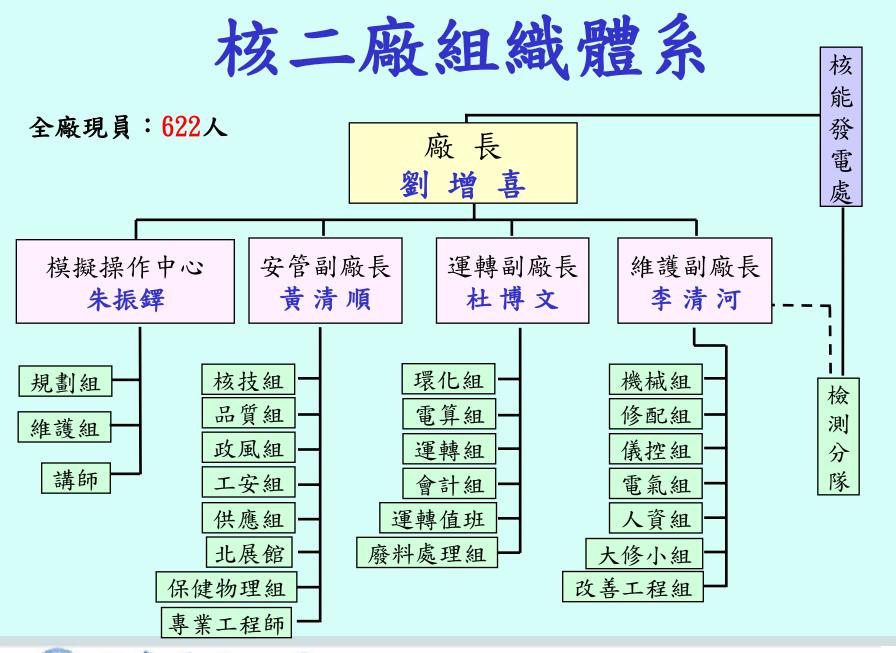
西屋公司

開工日期

63. 9. 18

63. 9. 18

商轉日期


70. 12. 28

72. 3. 16

•裝置容量:98萬5千瓩X2(佔全系統4.8%)

(全台最大單機容量)

•年平均發電量:150~160 億度(去年發電佔全系統7.2%)

核能二廠廠房示意圖

/V ▲ 凝水貯藏間

燃料貯存間

柴油機房

#1
反應器間

輔機間

廢料

處

理間

控制間

凝水貯藏間

燃料貯存間

#2 反應器間 柴

油

機

房

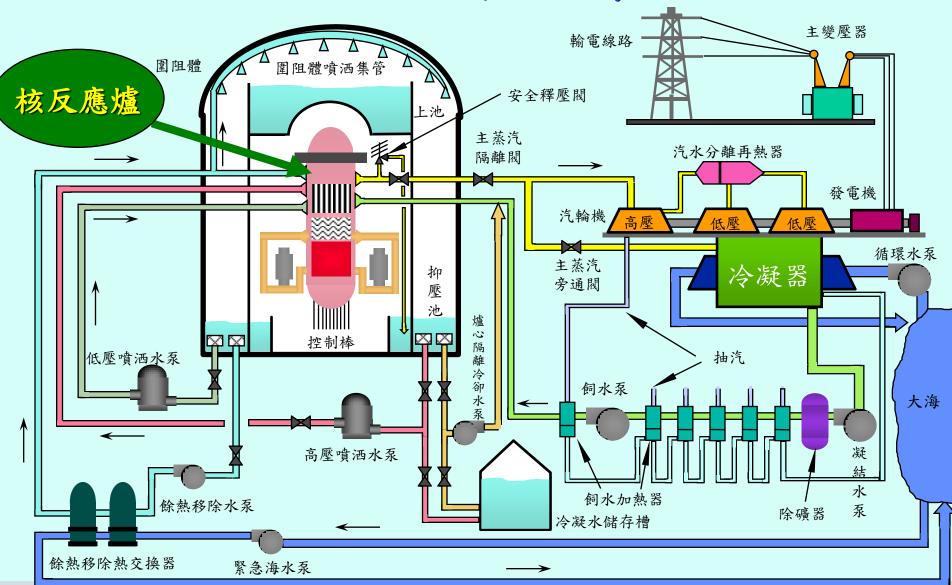
輔機間

汽

輪機

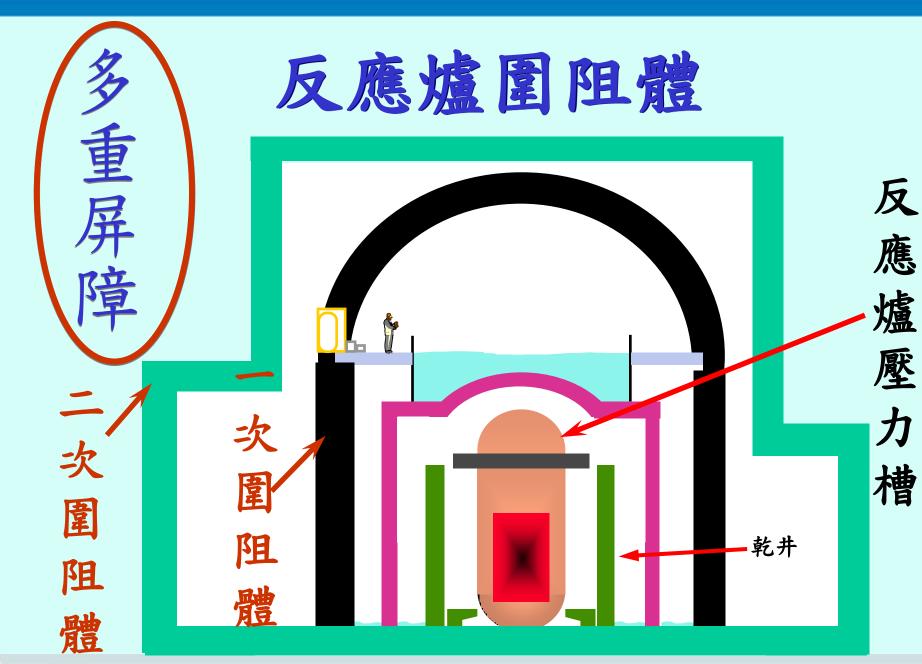
眉

次術 支援心


M 公 大 樓

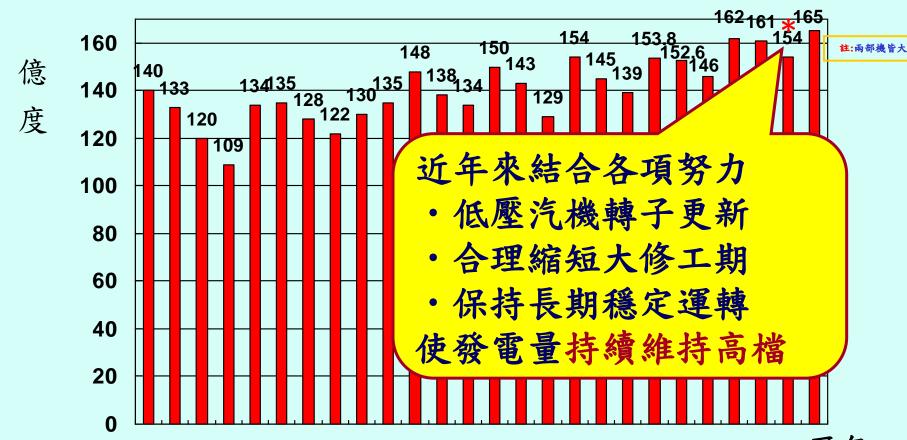
▼-主變壓器 ---

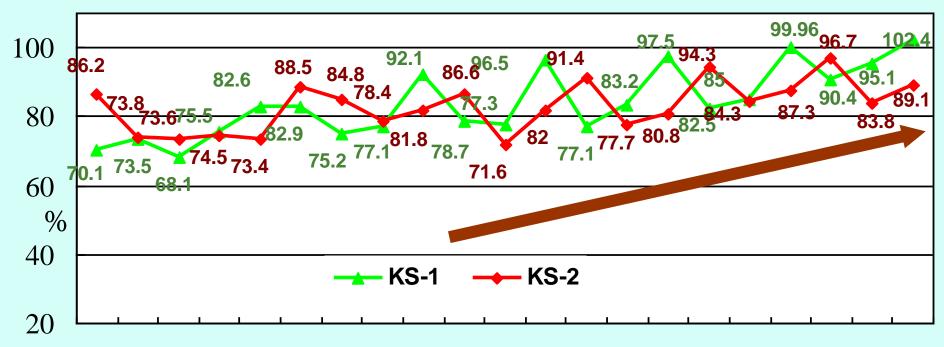
核能二廠發電系統簡要流程圖



台湾重力公司

電廠安全設備


- ●保守性設計
 - ◎ 多重性(Redundancy)
 - ◎ <u>多樣性</u>(Diversity)
 - ◎ 分隔佈置(Physical Separation)
 - ◎ 失效時安全(Fail Safe)
- ●遵守電廠技術規範要求
 - ◎安全系統,定期試驗
 - 設備故障,限時修復
 - 未能修復,降載停機



核二廠歷年毛發電量統計

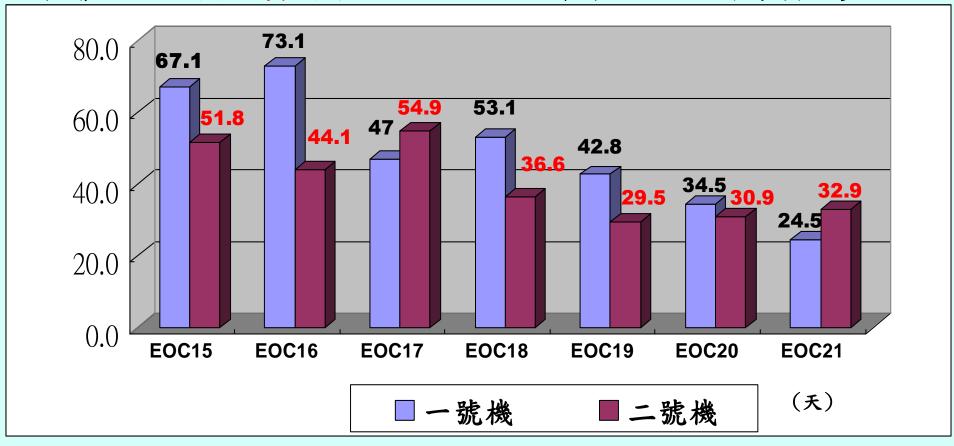
ややイやややかかかかかかかかかかかかかかか。 至100年12月底,兩部機累計發電量已達4083億度

機組容量因數

'91 '92 '93 '94 '95 '96 '97 '98 '99 '00 '01 '02 '03 '04 '05 '06 '07 '08 '09 '10 '11

- 1. 累計容量因數(商轉後): KS1=79.7% KS2=79.9%. (至100年12月底)
- 2. 2008年<u>一號機</u>年度容量因數<u>99. 96</u>%,在<u>全世界</u>436座核電機組中, 排名第8.

低壓汽機轉子更新

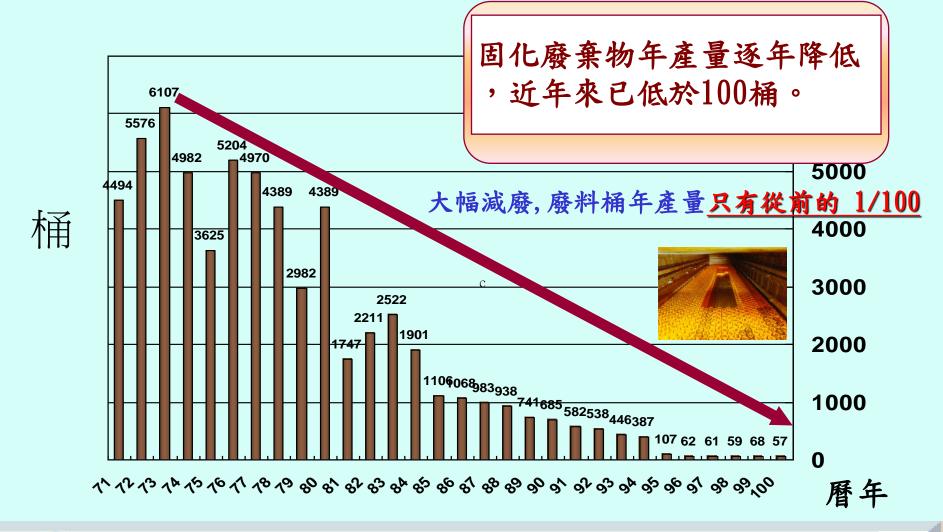

- 95年完成一號機低壓汽機轉子更新
 - ●提昇設備可靠度外,發電<u>出力大幅增加</u> 3.4萬瓩.
 - ●使一號機單機出力超過100萬瓩.
 - •投資金額在兩年內全部回收.
- ▶二號機在100年大修,進行相同改善

(出力亦超過100萬瓩)

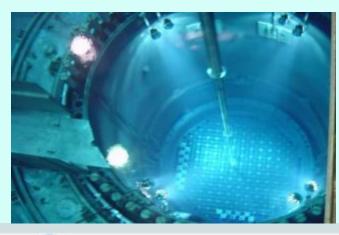
有效縮短大修工期

▶在兼顧安全與品質要求下,核二廠近年來大修工期持續進步。

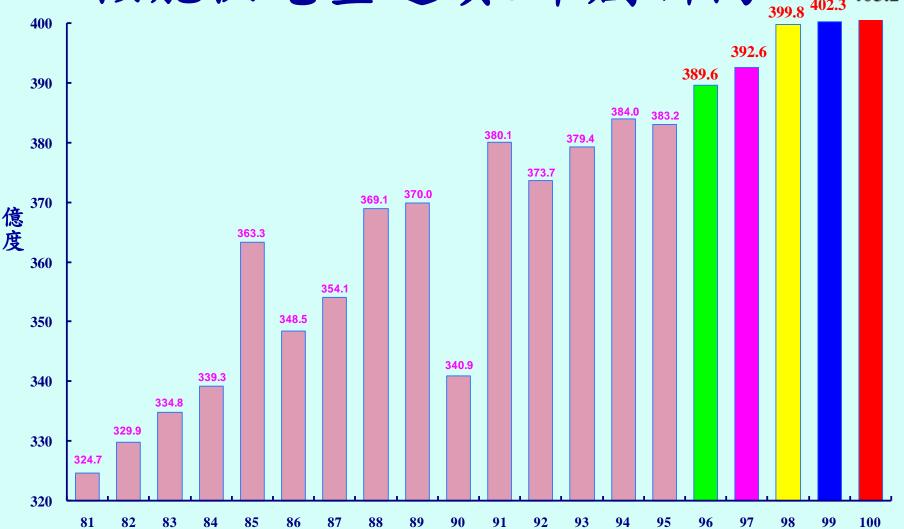
97年二號機大修工期29.45天(核能首度低於30天),隨後連續運轉381天,顯見縮短工期與維護品質得以兼顧。(99年一號機更創下最短工期24.48天佳績,且保持連續運轉已超過一年)

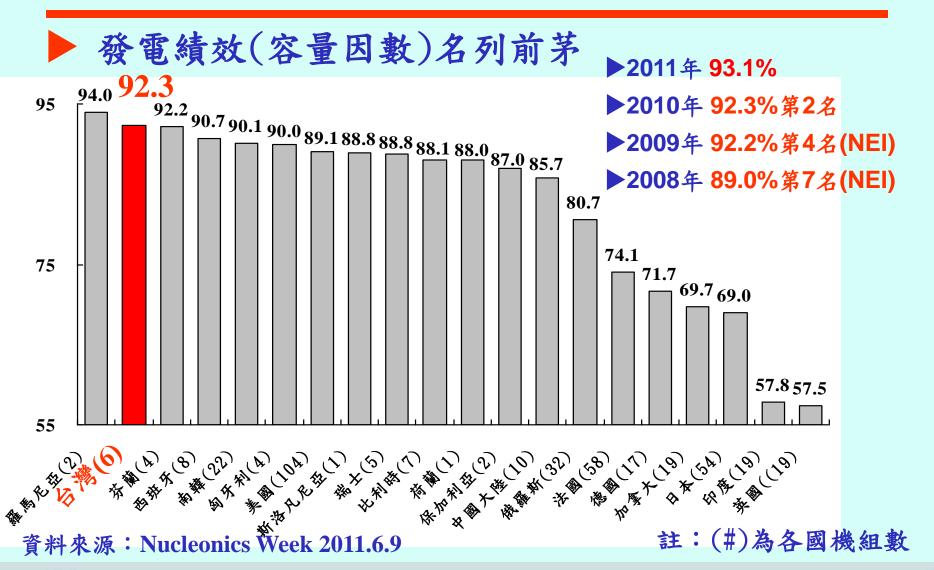


核二廠旁輻射劑量率與背景值無異



低放射性固化廢棄物產量(核二廠)


貳、核能整體營運績效



核能供電量連續5年創新高

營運績效卓越

台電各類發電成本分析

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

•核電成本0.66, 含後端提列0.17元/度(核電每年節省台電發電成本,約600億元)

5.5

3.5

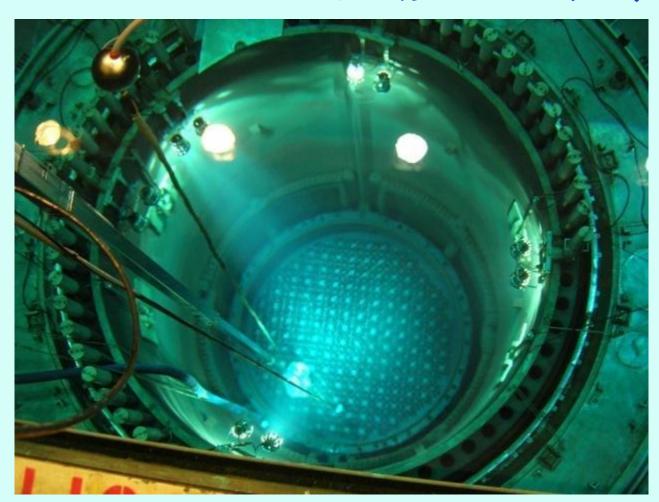
0.5

台電急停(跳機)次數統計

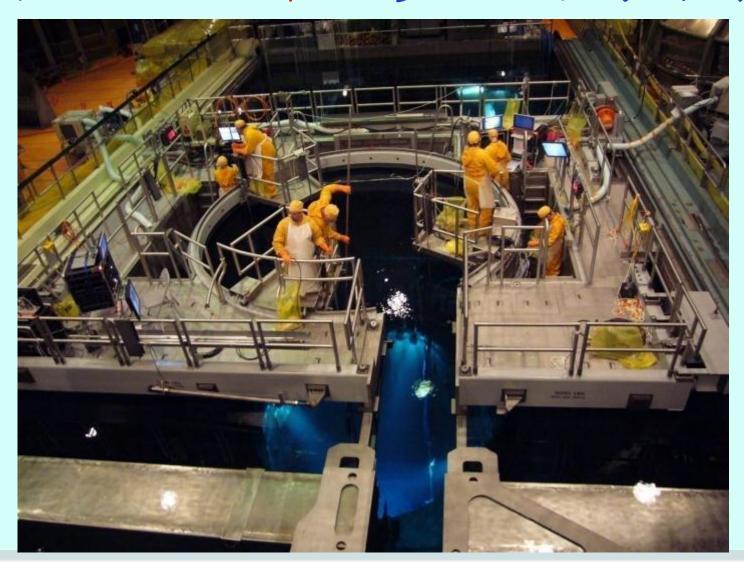
註: 斜體字部份,為輸電系統故障、颱風、地震等非電廠因素之急停次數。

連續運轉與大修工期

>連續運轉天數


- ▶核一廠一號機94年: 538天
- ▶核三廠一號機99年: 539天
- ▶核三廠二號機98年: 542天

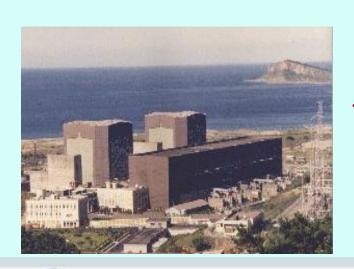
▶大修工期


- ▶核二廠二號機97年: 29.45天
- ▶核三廠二號機98年: 28.48天
- ▶核二廠一號機99年: 24.48天

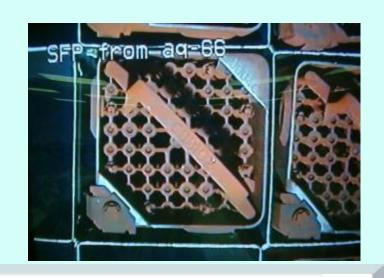
核二廠大修爐心作業

- ●核二廠採18個月 運轉週期,每1.5 年停機,進行大 修及更換反應爐 核燃料工作。
- ●用過核燃料及爐 内組件均具高放 射性。
- ●需採水下遠距作 業方式進行。

新設360度平台多點同時作業



有效節省要徑工作時間



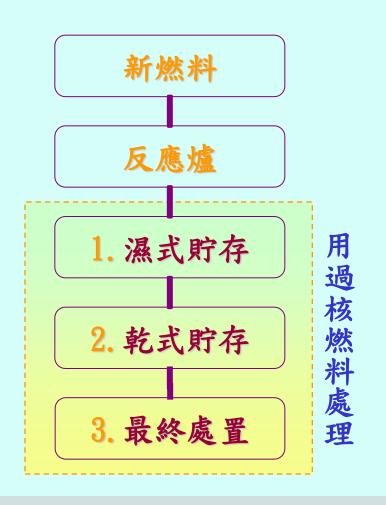
冬、高低階廢料處理策略

- 一. 用過核燃料之處理
- 二. 低放射性廢棄物之處理

一、用過核燃料乾式貯存

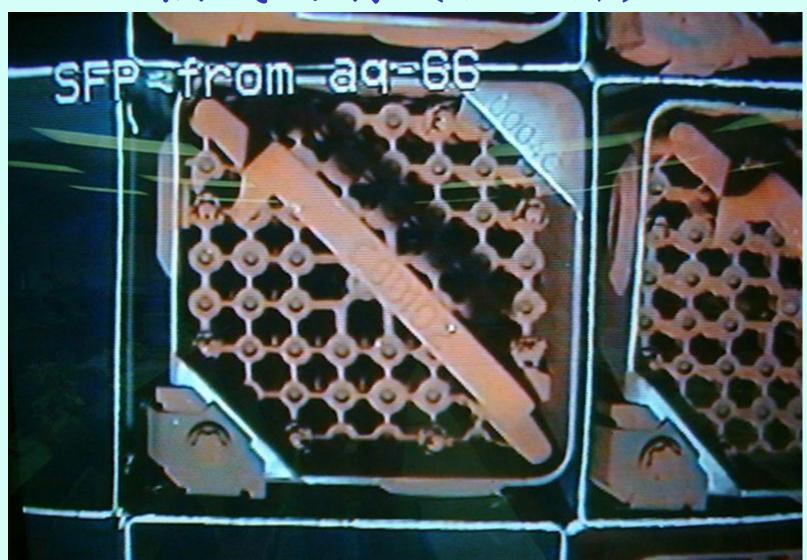
用過核燃料

- ·大修時從反應爐內,退出的用過核燃料 (每18個月約退出1/3)。
- · 具高放射性和衰變熱, 目前都貯存在廠內的用過核燃料池中。
- · 含有可回收的鈽、鈾等資源,受到<u>國際</u> 原子能總署嚴格監管。



用過核燃料處理

發電後用過核燃料,分三階段處理:


- 1. 濕式貯存(先期冷卻)
- 2. 乾式貯存
- 3. 最終處置

燃料池濕式貯存

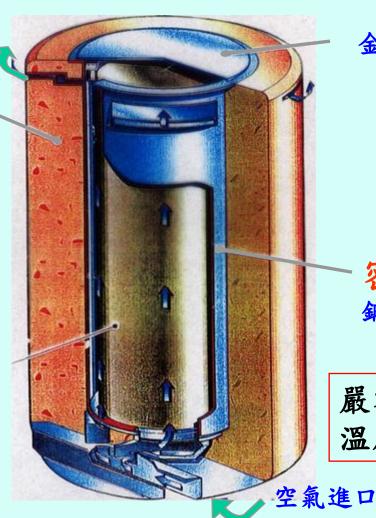
濕式貯存(核燃料)

乾式貯存計畫

- ●現有濕式核燃料池,預估將於民國105年貯滿。
- ●規劃興建廠內乾式貯存場(容量為2349束燃料)。
- ●計劃獲准後,將於<u>民國104年</u>開始試運轉,裝貯用過核燃料。
- 貯存設施之輻射劑量、溫度等,將採同世界標準 (歐、美、日等世界各國,已有20年以上運轉經驗, 是一種成熟技術)。

乾式貯存的設計 - 混凝土護箱

空氣出口


混凝土

高度:5.74公尺

厚度:72公分

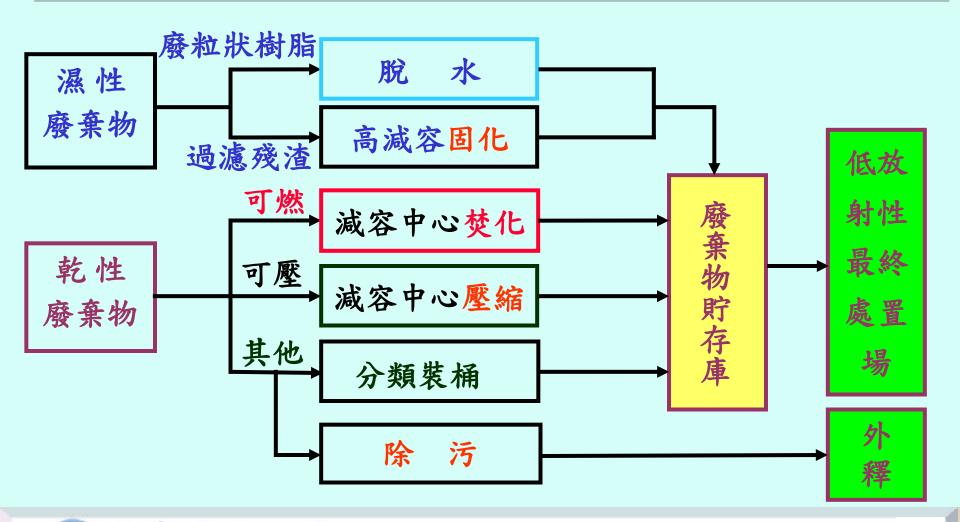
外徑:3.45公尺

每箱可裝87束 核燃料

金屬罐雙層頂蓋

密閉金屬罐

鋼板厚度:1.5公分


嚴密監控表面劑量、 温度與保安管制。

混凝土護箱貯存場(模擬示意圖)

二. 低階放射性廢棄物管理策略

低放固化廢棄物三號貯存庫

設計基準:

>面積: 5,000 平方公尺

>容量: 39,133 桶

▶ 耐震設計: **0.24G** (921大地震時, 廠址實測震度僅0.043G)

> 溫濕度控制

低放射性廢棄物桶運貯

- 1. 以屏蔽車運至貯存庫
- 2. 以遙控起重機吊卸

3. 輸送機系統自動將廢棄物桶,移送至檢查站檢測。

低放射性廢棄物桶檢查

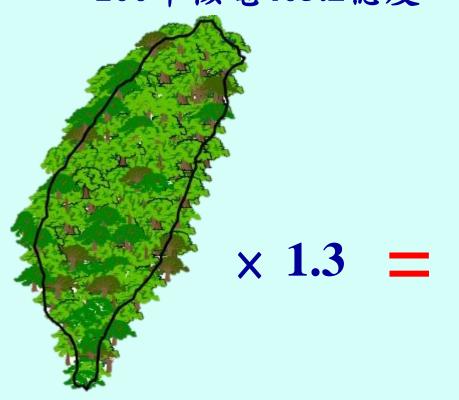
- 1. 自動量測表面輻射強度。
- 2. 機械手臂擦拭桶表面並進 行取樣。
- 3. 量測分析核種濃度。

低放射性廢棄物桶堆疊貯存

以棧板運搬,每個 棧板放6桶

三層棧板整齊堆疊

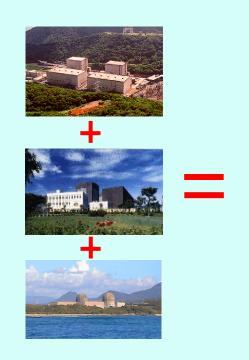
肆、環境保護與敦親睦鄰



- (一)、環境保護
- 核能減碳貢獻大
- 溫排水環保法規

核能減碳效益大

100年核電405.2億度=減排3400萬噸CO₂



大安森林公園 ×9萬座 墾丁國家公園 ×112座 陽明山國家公園 ×185座

註:替代能源以燃煤超臨界機組CO2排放強度係數0.839公斤/度計算

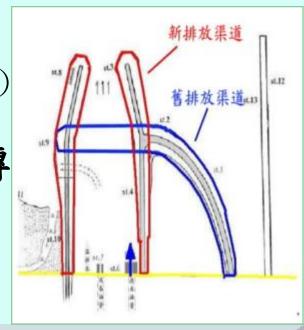
再生能源替代效益比較

以核能發電100年供電量405億度估算

核能發電405億度/6部機組

路竹太陽能電廠(2公頃) 裝置容量1,000瓩 發電量110萬度/年

3萬7千座 (7萬4千公頃)

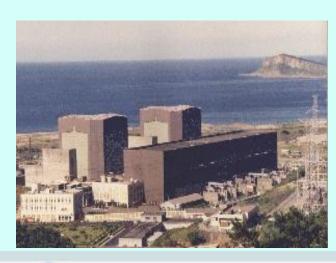

裝置容量3,000瓩; CF40% 發電量1,100萬度/年 風力發電 3,700座

温排水改善

環保署 87 年公告實施之「放流水標準」:

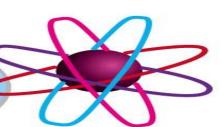
- 一離岸500公尺,海水溫升△T < 4℃
- 一 放流口水溫不得超過 42℃
 - 溫排水導流堤出口改善(如圖示)
 - ·夏季溫排水>41.7℃,即降載運轉

確保符合環保法規

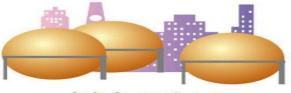

(二)、敦親睦鄰

- 1. 回饋與關懷鄉親:
 - > 電廠興建期間:以總工程經費1%金額回饋補助.
 - ➤電廠營運期間:以年度發電量、每年廢料桶數及用 過燃料數量回饋地方.
 - ▶ 以萬里區為例,99年電協會發電協助金、核能後端回饋金、電協會專案協助及其他睦鄰協助金,合計約1億4千萬元(金山區9330萬元).
- 2. 積極參與鄉鎮重大公共建設、興建醫院、急難救助 、海灘認養、用人/採購當地化、展示館融入地方文 物介紹,電廠緊急計劃演習邀請地方士紳、校長、意 見代表進廠參觀等.
- 3. 努力溝通與關懷回饋 <u>核電廠願意成為好鄰居</u>, 與地方共榮發展.

伍、核電現況與未來



能源多元化



能源多元化

燃油發電

燃氣發電

燃煤發電

⑥ 台灣電力公司

核電:準自產能源(各種發電燃料體積比較) 以核二廠年發電150億度電力,所需之燃料體積比較如下:

鈾燃料		68 公噸	
天然氣		219 萬公噸	
石	油	366 萬公噸	
煤		548 萬公噸	

貨機1架次

5.5萬 頓LNG船 **40船**次

10萬噸級油輪 37船次

6萬噸級煤輪92船次

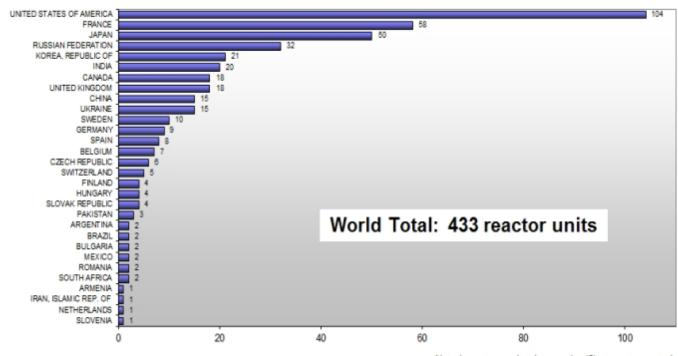
每次運送八個貨櫃之核燃料儲存廠內,即可維持18個月運轉使用

核能 二半自產能源

核電:不可或缺的能源選項

- ■核能發電優勢:
 - 化石燃料價格高漲,核電價格相對穩定。
 - 核電無溫室氣體排放,為乾淨的能源。
 - 核燃料運貯方便,核電為準自產能源。
- ■另外考量<u>能源多元化</u> 核電是未來能源發展,不可或缺的選項。

世界各國運轉中核能機組統計

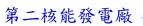

參考網站:www.iaea.org/

~ Nov. 2011

433 operating units in 30 countries

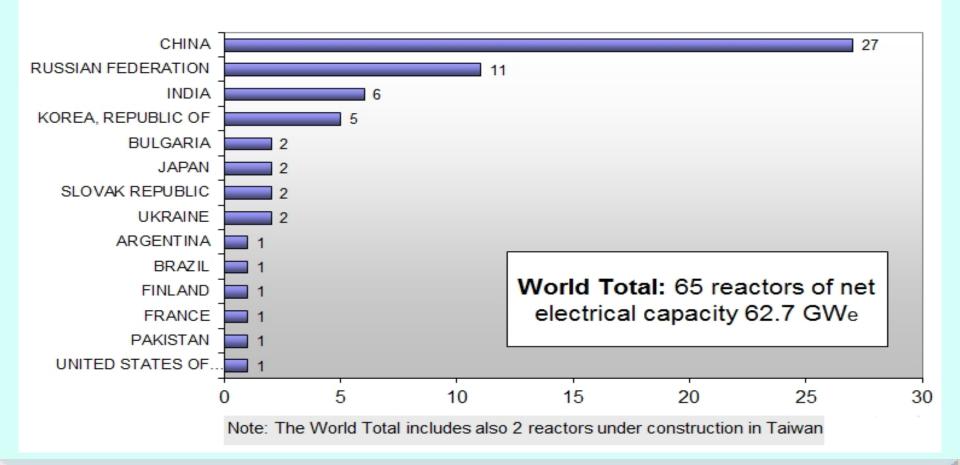
- USA 104
- France 58
- Japan 50
- Russia 32
- Korea 21
- India 20
- Canada 18
- UK 18
- China 15
- Ukraine 15
- Taiwan 6

Number of Reactors in Operation Worldwide



Note:Long-term shutdown units (5) are not counted

Note: In the World Total there are also 6 reactors in operation in Taiwan

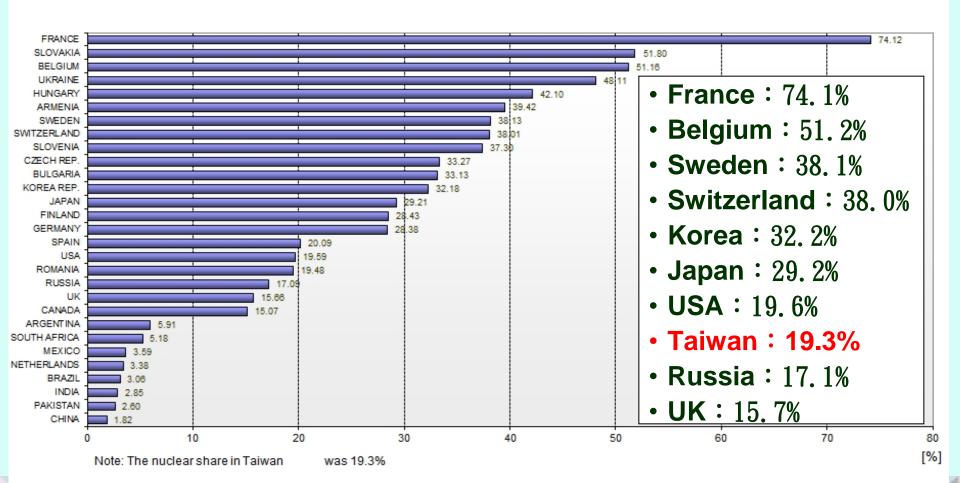


世界各國與建中核能機組統計

65 units in total

多考網站:http://www.iaea.org/

Number of Reactors under Construction Worldwide




2010年世界各國核能發電佔比

Nuclear Share in Electricity Generation in 2010

全球十大核電國一覽表

排名	國家	商轉中反應爐數量	占國家總發電量	興建中反應爐數量
1	美國	104	20.2%	1
2	法國	58	75.2%	1
3	日本	55	28.9%	2
4	俄羅斯	32	17.8%	10
5	韓國	21	34.8%	5
6	印度	20	2.2%	5
排名	國家	商轉中反應爐數量	占國家總發電量	興建中反應爐數量
排名 7	國家英國	商轉中反應爐數量 19	占國家總發電量 17.9%	興建中反應爐數量 0
				Marian makasan hara
7	英國	19	17.9%	0
7	英國加拿大	19 18	17.9% 14.8%	0 2
7 8 9	英國 加拿大 德國	19 18 17	17.9% 14.8% 26.1%	0 2 0

資料來源:台電公司、WANO & World Nuclear Association, 截至2011年2月

陸、因應日本核災作法

- 3月11日,日本本州東北外海規模9.0地震,引發巨大海嘯。
- ·福島一廠機組喪失電源(含自備緊急柴油發電機),反應爐無法補水冷卻,造成核燃料裸露,高溫產生氫氣累積爆炸,廠房因此受損,部分放射性物質因而外釋。

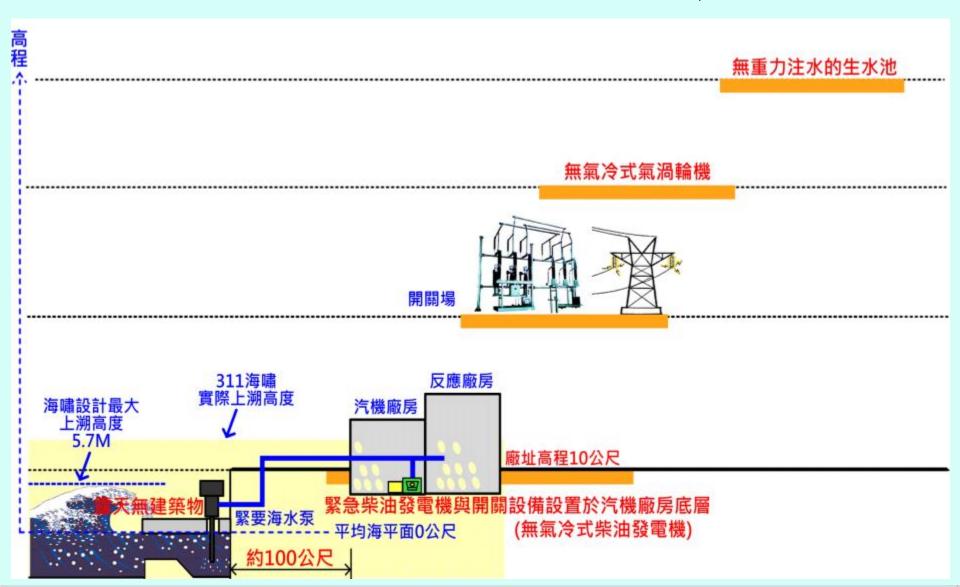
地震震央與福島電廠位置圖

規模	地震時間 (日本時間)	經度	緯度	深度(公里)	海嘯高度
9.0	2011/3/11 14:46:24	38. 322	142. 369	10	約10公尺

福島一廠鳥瞰圖(海嘯前)

福島一廠(事故後)

(3月18日)



台電檢討評估: 福島與核二廠設計差異(核二優勢)

	福島一廠	核二廠	
中子緩和劑	水/不可燃性		
圍阻體	有(可侷限釋出的輻射物質在圍阻體內)		
安全注水系統	電動注水泵/汽機注水泵		
緊急柴油發電機	2台(每部機)	3台(每部機)	
第5台緊急柴油發電機 (氣冷式)	無	有	
氣渦輪發電機(氣冷式)	無	有 (2台)	
備用高程生水池	無	有	

日本福島一廠防海嘯設計

核二廠各廠房設施高程示意圖

海平面以上高度 生水池A池 100公尺 100公尺 生水池B池 90公尺 90公尺-開關場 27公尺 -27公尺 氣渦輪發電機廠房 22公尺 22公尺 廠址 緊急柴油發電機 12公尺 12公尺 10.28公尺 緊急海水泵室 0公尺-正常水位

第5號柴油發電機廠房

氣渦輪發電機廠房

生水池 B 池

台電核能總體檢

◆成立專案組織

總體檢 專案組織

耐震評估 專案小組

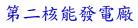
燃料池冷卻評估專案小組

海嘯總體檢專案小組

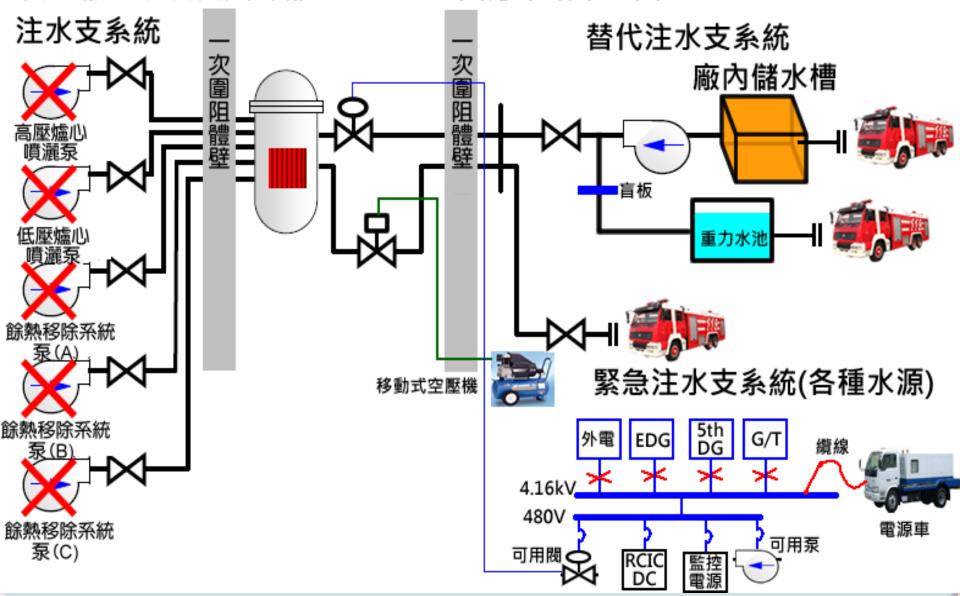
台電核能總體檢(續)

◆短/中程改善措施

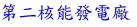
短程 12項


總體檢報告已於100 年5月份完成,並訂 定各項改善完成期限

- 廠區全黑事件檢討
- 廠內廠外水災事件
- 用過燃料池完整性及冷卻
- ·最終熱沈能力
- •機組斷然處置程序之檢討
- 一/二號機組相互支援
- 複合式災難事件
- 超過設計基準事故
- 事故處理程序與訓練
- 設施/設備完備性及備品儲備
- 精進人力/組織運作及強化核能安全文化
- ·加強廠區防災演練


中程 1項

•提前進行10年整體安全評估



核二廠全黑及喪失冷卻水RPV注水因應策略示意圖

- ◆沒有安全,就沒有核電。
- ◆萬一危及爐心安全,台電會採取 斷然處置措施,以保護民眾生命為 最高準則。
- ◆記取福島教訓,與世界核能先進 國家同步檢討,改進可能弱點,確 保核能安全。

報告完畢

敬請指教

核電廠管制區參訪說明

- ●手機攜入管制區前,請關閉電源。
- ●廠內參訪,請戴妥<u>安全帽</u>。
- ●未滿18歲訪客,或懷孕婦女請勿進入管制區。
- ●請<u>勿碰觸</u>現場任何<u>儀器、設備</u>。
- ●電腦門禁全區管制,務請隨隊參訪。
- 需要任何協助,請隨時洽詢隨隊陪同人員。

圍阻體 (鋼筋混凝土厚牆)

雙重氣鎖門(人員進出)

現場注意安全 (地面突出物)

