1. (a) (3pts) Let n_{i} be the number of candies the i th child got, where $i=1,2,3,4$, then it must be satisfied that

$$
\begin{equation*}
n_{i} \geq 1, i=1,2,3,4, \quad \text { and } \quad n_{1}+n_{2}+n_{3}+n_{4}=10 \tag{1}
\end{equation*}
$$

The number of integer solutions for Eqn. (1) is $\binom{10-1}{4-1}=84$.
(b) (3pts) For each of the 10 different books, there are four distinct (and independent) choices of child it can be given to. So, the answer is $4 \times 4 \times \cdots \times 4=4^{10}$.
2. ($8 p t s)$ The three equations can be represented in terms of p_{1}, p_{2}, p_{3}, and p_{4} as follows:

$$
\begin{align*}
P(A \cup B)=3 P(B) & \Rightarrow p_{1}+p_{2}+p_{3}=3\left(p_{1}+p_{3}\right), \tag{2}\\
P(A \cap B)=0.4 P\left(A \cap B^{c}\right) & \Rightarrow p_{1}=0.4 p_{2}, \tag{3}\\
P\left((A \cup B)^{c}\right)=0.1 & \Rightarrow p_{4}=0.1 . \tag{4}
\end{align*}
$$

Furthermore, because $(A \cap B) \cup\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right) \cup\left(A^{c} \cap B^{c}\right)=\Omega$ (the whole sample space),

$$
\begin{equation*}
p_{1}+p_{2}+p_{3}+p_{4}=1 \tag{5}
\end{equation*}
$$

By solving Eqns. (2), (3), (4), and (5), we get

$$
p_{1}=0.24, \quad p_{2}=0.6, \quad p_{3}=0.06, \quad \text { and } p_{4}=0.1
$$

Therefore, $P(A)=p_{1}+p_{2}=0.84$.
3. (a) ($4 p t s$) Let E be the event of picking a black ball the first draw. Then,

$$
P\left(E \mid U_{1}\right)=\frac{3}{5} \quad \text { and } \quad P\left(E \mid U_{2}\right)=\frac{2}{5}
$$

So, by the law of total probability,

$$
\begin{aligned}
P(E) & =P\left(E \mid U_{1}\right) \cdot P\left(U_{1}\right)+P\left(E \mid U_{2}\right) \cdot P\left(U_{2}\right) \\
& =\frac{3}{5} \cdot \frac{1}{2}+\frac{2}{5} \cdot \frac{1}{2}=\frac{1}{2} .
\end{aligned}
$$

(b) (2pts) By the Bayes' Rule, we get

$$
P\left(U_{1} \mid E\right)=\frac{P\left(U_{1} \cap E\right)}{P(E)}=\frac{P\left(E \mid U_{1}\right) \cdot P\left(U_{1}\right)}{P(E)}=\frac{\frac{3}{5} \cdot \frac{1}{2}}{\frac{1}{2}}=\frac{3}{5} .
$$

(c) ($4 p t s$) Let F be the event that the second ball is black, then by the law of total probability,

$$
\begin{aligned}
P(E \cap F) & =P\left(E \cap F \mid U_{1}\right) \cdot P\left(U_{1}\right)+P\left(E \cap F \mid U_{2}\right) \cdot P\left(U_{2}\right) \\
& =\left(\frac{3}{5}\right)^{2} \cdot \frac{1}{2}+\left(\frac{2}{5}\right)^{2} \cdot \frac{1}{2}=\frac{13}{50} .
\end{aligned}
$$

Therefore,

$$
P(F \mid E)=\frac{P(E \cap F)}{P(E)}=\frac{13 / 50}{1 / 2}=\frac{13}{25} .
$$

4. (a) (5pts) For the events A, B, and C,
$P(A)=P(\{$ red die is 1,2 , or 3$\})=3 / 6=1 / 2$,
$P(B)=P(\{$ red die is 3,4 , or 5$\})=3 / 6=1 / 2$,
$P(C)=P(\{($ red die, blue die $)$ is $(1,4),(2,3),(3,2)$, or $(4,1)\})=4 / 36=1 / 9$.
The event $A \cap B \cap C$ is exactly the event that the red die is 3 and blue die is 2 . So,

$$
P(A \cap B \cap C)=\frac{1}{36}=P(A) P(B) P(C)
$$

(b) (3pts) The answer is NO because

$$
P(A \cap B)=P(\{\operatorname{red} \text { die is } 3\})=\frac{1}{6} \neq \frac{1}{4}=P(A) P(B) .
$$

5. (a) (8pts) Let $F_{Y}(y)$ be the cumulative distribution function of Y, then

$$
\begin{equation*}
F_{Y}(y)=P(Y \leq y)=P(a X+b \leq y)=P(a X \leq y-b) \tag{6}
\end{equation*}
$$

(i) When $a>0$, from (6) we get

$$
P(a X \leq y-b)=P\left(X \leq \frac{y-b}{a}\right)=F_{X}\left(\frac{y-b}{a}\right)
$$

(ii) When $a<0$, from (6) we get

$$
P(a X \leq y-b)=P\left(X \geq \frac{y-b}{a}\right)=1-P\left(X<\frac{y-b}{a}\right)=1-F_{X}\left(\left(\frac{y-b}{a}\right)-\right)
$$

where $F_{X}\left(\left(\frac{y-b}{a}\right)-\right)$ is the left limit of F_{X} at $\frac{y-b}{a}$.
(iii) When $a=0$, from (6) we get

$$
P(a X \leq y-b)=P(0 \leq y-b)= \begin{cases}1, & \text { if } y \geq b \\ 0, & \text { if } y<b\end{cases}
$$

(b) (3pts) Because all values of a probability mass function must sum up to one, we get

$$
1=\sum_{x=1}^{4} f_{X}(x)=c \cdot(1+4+9+16)=30 \cdot c \quad \Rightarrow \quad c=\frac{1}{30} .
$$

6. (a) (10pts) Let Y_{1} and Y_{2} be the labels on the first and second tickets drawn, respectively. Then,

$$
P\left(Y_{1}=y_{1}, Y_{2}=y_{2}\right)= \begin{cases}(1 \times 2) /(10 \times 9), & \text { if }\left(y_{1}, y_{2}\right)=(1,2) \text { or }(2,1), \\ (1 \times 3) /(10 \times 9), & \text { if }\left(y_{1}, y_{2}\right)=(1,3) \text { or }(3,1), \\ (1 \times 4) /(10 \times 9), & \text { if }\left(y_{1}, y_{2}\right)=(1,4) \text { or }(4,1), \\ (2 \times 1) /(10 \times 9), & \text { if }\left(y_{1}, y_{2}\right)=(2,2), \\ (2 \times 3) /(10 \times 9), & \text { if }\left(y_{1}, y_{2}\right)=(2,3) \text { or }(3,2), \\ (2 \times 4) /(10 \times 9), & \text { if }\left(y_{1}, y_{2}\right)=(2,4) \text { or }(4,2), \\ (3 \times 2) /(10 \times 9), & \text { if }\left(y_{1}, y_{2}\right)=(3,3), \\ (3 \times 4) /(10 \times 9), & \text { if }\left(y_{1}, y_{2}\right)=(3,4) \text { or }(4,3), \\ (4 \times 3) /(10 \times 9), & \text { if }\left(y_{1}, y_{2}\right)=(4,4),\end{cases}
$$

and

$$
X=\left|Y_{1}-Y_{2}\right|= \begin{cases}1, & \text { if }\left(Y_{1}, Y_{2}\right)=(1,2) \text { or }(2,1), \\ 2, & \text { if }\left(Y_{1}, Y_{2}\right)=(1,3) \text { or }(3,1), \\ 3, & \text { if }\left(Y_{1}, Y_{2}\right)=(1,4) \text { or }(4,1), \\ 0, & \text { if }\left(Y_{1}, Y_{2}\right)=(2,2), \\ 1, & \text { if }\left(Y_{1}, Y_{2}\right)=(2,3) \text { or }(3,2), \\ 2, & \text { if }\left(Y_{1}, Y_{2}\right)=(2,4) \text { or }(4,2), \\ 0, & \text { if }\left(Y_{1}, Y_{2}\right)=(3,3), \\ 1, & \text { if }\left(Y_{1}, Y_{2}\right)=(3,4) \text { or }(4,3), \\ 0, & \text { if }\left(Y_{1}, Y_{2}\right)=(4,4) .\end{cases}
$$

Therefore, the probability mass function of X is

$$
f_{X}(x)= \begin{cases}P(X=0)=(2+6+12) / 90=20 / 90, & \text { if } x=0 \\ P(X=1)=(2 \times 2+6 \times 2+12 \times 2) / 90=40 / 90, & \text { if } x=1 \\ P(X=2)=(3 \times 2+8 \times 2) / 90=22 / 90, & \text { if } x=2 \\ P(X=3)=(4 \times 2) / 90=8 / 90, & \text { if } x=3 \\ 0, & \text { otherwise }\end{cases}
$$

(b) (2pts)

$$
E(X)=\frac{0 \times 20+1 \times 40+2 \times 22+3 \times 8}{90}=108 / 90=1.2 .
$$

(c) $(3 p t s)$

$$
\begin{gathered}
E\left(X^{2}\right)=\frac{0 \times 20+1 \times 40+4 \times 22+9 \times 8}{90}=20 / 9 \\
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=20 / 9-(1.2)^{2}=176 / 225 \approx 0.782
\end{gathered}
$$

7. (a) (6pts) We first show that

$$
\begin{aligned}
P(X>n) & =\sum_{x=n+1}^{\infty} f_{X}(x)=\sum_{x=n+1}^{\infty} p \cdot(1-p)^{x-1} \\
& =p \cdot\left[(1-p)^{n}+(1-p)^{n+1}+(1-p)^{n+2}+\cdots\right]=p \cdot \frac{(1-p)^{n}}{p}=(1-p)^{n} .
\end{aligned}
$$

Then, for positive integers n and k,

$$
\begin{aligned}
P(X=n+k \mid X>n) & =\frac{P((X=n+k) \cap(X>n))}{P(X>n)}=\frac{P(X=n+k)}{P(X>n)} \\
& =\frac{p \cdot(1-p)^{n+k-1}}{(1-p)^{n}}=p \cdot(1-p)^{k-1}=P(X=k)
\end{aligned}
$$

(b) ($6 p t s$) The random variable X is the number of independent Bernoulli trials required until we get r successes where each trial has probability p of success. Suppose that we run n such trials and have not yet got r successes in the n trials. We need to continue in order to find the value of X and so we know that it is the event $X>n$. The number of successes in the first n trials, however, follows a binomial distribution with parameters n and p. We need to continue if, and only if, we have not found r successes in n trials, which is the event $Y<r$. Thus the two events $X>n$ and $Y<r$ are identical and hence have the same probability, i.e.,

$$
P(X>n)=P(Y<r) .
$$

