1. (16pts, 2pts for each)
(a) True.
(b) False. The values of a pdf can be larger than 1. However, the integration of a pdf over any region must have values between 0 and 1 .
(c) False. It must be a one-to-one transformation.
(d) True.
(e) True.
(f) True.
(g) False. If X and Y are independent, then $E(X \mid Y)=E(X)$. Zero correlation (i.e., uncorrelated) is a weaker condition than independence. It cannot guarantee this property.
(h) False. When X and Y are independent, $E(X / Y)=E(X) E(1 / Y) \neq E(X) / E(Y)$ in general.
2. (15pts, 3pts for each)
(a) $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ with $\mu=68$ and $\sigma^{2}=2$.
(b) $\operatorname{Gamma}(\alpha, \lambda)$ with $\alpha=1000$ and $\lambda=5$. (An alternative answer that is acceptable is $\operatorname{Exponential}(\lambda)$ with $\lambda=\frac{1}{1000 / 5}=\frac{1}{200}$.)
(c) $\operatorname{Poisson}(\lambda)$ with $\lambda=2 \times 2=4$.
(d) $\operatorname{Binomial}(n, p)$ with $n=20$ and $p=1 / 8$.
(e) Uniform (a, b) with $a=0$ and $b=360$.
3. (6pts) Let X be the number of " 5 " that occurs in the 500 rolls, then

$$
X \sim \operatorname{Binomial}(500,1 / 6)
$$

since the die is fair. Therefore,

$$
E(X)=500 \times(1 / 6)=500 / 6, \quad \text { and } \quad \operatorname{Var}(X)=500 \times(5 / 36)=2500 / 36
$$

Because $n=500$ is large, we can use Normal approximation to evaluate $P(X \geq 100)$ as follows:

$$
\begin{aligned}
P(X \geq 100)=P(X \geq 99.5) & =P\left(\frac{X-\frac{500}{6}}{\sqrt{\frac{2500}{36}}} \geq \frac{99.5-\frac{500}{6}}{\sqrt{\frac{2500}{36}}}\right) \\
& \approx P\left(Z \geq \frac{99.5-\frac{500}{6}}{\sqrt{\frac{2500}{36}}}\right)=1-\Phi\left(\frac{99.5-\frac{500}{6}}{\sqrt{\frac{2500}{36}}}\right) \\
& =1-\Phi(1.94),
\end{aligned}
$$

where $Z \sim \operatorname{Normal}(0,1)$.
4. (a) (2pts) Because $X \sim \operatorname{Uniform}(0, L / 2), Y \sim \operatorname{Uniform}(L / 2, L)$, and they are independent, their joint pdf is

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)= \begin{cases}\frac{1}{L / 2} \frac{1}{L / 2}=\frac{4}{L^{2}}, & \text { for } 0<x<L / 2 \text { and } L / 2<y<L \\ 0, & \text { otherwise }\end{cases}
$$

(b) ($4 p t s$) Our condition is that

$$
Y-X<X, \quad \text { (i.e., } Y<2 X)
$$

The probability we want to know is thus the probability that $(X, Y) \in S$, where $S=\{(x, y) \mid L / 2 \leq y<2 x \leq L\}$. Therefore,

$$
\begin{aligned}
& P(Y<2 X)=\iint_{S} f_{X, Y}(x, y) d x d y \\
& \quad=\int_{L / 4}^{L / 2} \int_{L / 2}^{2 x} \frac{4}{L^{2}} d y d x=\frac{4}{L^{2}} \int_{L / 4}^{L / 2}(2 x-L / 2) d x=\frac{4}{L^{2}} \times \frac{L^{2}}{16}=\frac{1}{4} .
\end{aligned}
$$

5. (a) (4pts) To compute $P\left(I_{i}=1\right)$, assume that husband $\# i$ is seated first. Then, of the remaining 19 seats which are available at random to wife $\# i$, only two will lead to sitting together. So,

$$
P\left(I_{i}=1\right)=\frac{20 \times 2}{20 \times 19}=\frac{2}{19} .
$$

Because

$$
P\left(I_{i}=1, I_{j}=1\right)=P\left(I_{j}=1 \mid I_{i}=1\right) P\left(I_{i}=1\right),
$$

it is enough to compute $P\left(I_{j}=1 \mid I_{i}=1\right)$. This is the same as having a line (Note. not a circle) of 18 chairs in a row, for the j th couple to choose from randomly. There are $(1+16 \times 2+1)=34$ ways to seat the j th husband and wife next to each other out of 18×17 possible ways where they could be seated. Thus,

$$
P\left(I_{j}=1 \mid I_{i}=1\right)=\frac{34}{18 \times 17}=\frac{1}{9}, \quad \text { and } P\left(I_{i}=1, I_{j}=1\right)=\frac{1}{9} \times \frac{2}{19} .
$$

(b) (3pts) Because $N=\sum_{i=1}^{10} I_{i}$, by the fundamental formula about expectation,

$$
E(N)=\sum_{i=1}^{10} E\left(I_{i}\right) .
$$

Now, since I_{i} 's are indicator functions,

$$
E\left(I_{i}\right)=P\left(I_{i}=1\right)=\frac{2}{19}, \quad \text { and } E(N)=10 \times \frac{2}{19}=\frac{20}{19} .
$$

(c) (5pts) To compute the variance of N, we use the formula:

$$
\operatorname{Var}(N)=\operatorname{Var}\left(\sum_{i=1}^{10} I_{i}\right)=\sum_{i=1}^{10} \operatorname{Var}\left(I_{i}\right)+2 \sum_{1 \leq i<j \leq 10} \operatorname{Cov}\left(I_{i}, I_{j}\right) .
$$

Because

$$
\operatorname{Var}\left(I_{i}\right)=E\left(I_{i}^{2}\right)-\left[E\left(I_{i}\right)\right]^{2}=\frac{2}{19}-\left(\frac{2}{19}\right)^{2}=\frac{34}{361},
$$

and

$$
\operatorname{Cov}\left(I_{i}, I_{j}\right)=E\left(I_{i} I_{j}\right)-E\left(I_{i}\right) E\left(I_{j}\right)=\frac{2}{9 \times 19}-\left(\frac{2}{19}\right)^{2}=\frac{2}{3249},
$$

we get

$$
\operatorname{Var}(N)=10 \times \frac{34}{361}+2 \times 45 \times \frac{2}{3249}=\frac{3240}{3249}=\frac{360}{361} .
$$

6. (a) (2pts) The pdf of the Weibull (α, β) distribution is

$$
f(x)=\frac{d}{d x} F(x)=\frac{\beta}{\alpha^{\beta}} x^{\beta-1} e^{-\left(\frac{x}{\alpha}\right)^{\beta}}
$$

for $x \geq 0$, and $f(x)=0$, for $x<0$.
(b) ($4 p t s$) Notice that if X_{1}, \ldots, X_{n} are i.i.d. from a continuous distribution with cdf F, then $F\left(X_{1}\right), \ldots, F\left(X_{n}\right)$ are i.i.d. $\sim \operatorname{Uniform}(0,1)$. For the case of $\operatorname{Weibull}(\alpha, \beta)$, let $U_{i}=F\left(X_{i}\right)=1-e^{-\left(\frac{X_{i}}{\alpha}\right)^{\beta}}$, for $i=1, \ldots, n$, then

$$
X_{i}=F^{-1}\left(U_{i}\right)=\alpha\left[-\log \left(1-U_{i}\right)\right]^{\frac{1}{\beta}}, \quad i=1, \ldots, n,
$$

are i.i.d. \sim Weibull (α, β) distribution.
(c) $(4 p t s)$ Let $X_{(1)}=\min \left\{X_{1}, \ldots, X_{n}\right\}$. For $x>0$,

$$
P\left(X_{(1)}>x\right)=P\left(X_{1}>x, \cdots, X_{n}>x\right)=\left[P\left(X_{1}>x\right)\right]^{n}=\left[e^{-\left(\frac{x}{\alpha}\right)^{\beta}}\right]^{n}=e^{-n\left(\frac{x}{\alpha}\right)^{\beta}}
$$

Therefore, the cdf of $X_{(1)}$ is

$$
F_{X_{(1)}}(x)= \begin{cases}1-e^{-n\left(\frac{x}{\alpha}\right)^{\beta}}, & \text { for } x \geq 0 \\ 0, & \text { for } x<0\end{cases}
$$

which shows that $X_{(1)} \sim \operatorname{Weibull}\left(\alpha n^{-\frac{1}{\beta}}, \beta\right)$.
7. (a) (2pts) Because X_{1} and X_{2} are independent, their joint pdf is

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=f\left(x_{1}\right) f\left(x_{2}\right)=\frac{1}{2 \pi} e^{-\left(x_{1}^{2}+x_{2}^{2}\right) / 2}
$$

where $-\infty<x_{1}, x_{2}<\infty$.
(b) (6pts) The inverse function of the transformation is:

$$
X_{1}=g_{1}^{-1}\left(W_{1}, W_{2}\right)=\frac{\sqrt{3}}{4} W_{1}+\frac{1}{4} W_{2} \quad \text { and } \quad X_{2}=g_{2}^{-1}\left(W_{1}, W_{2}\right)=\frac{1}{4} W_{1}-\frac{\sqrt{3}}{4} W_{2}
$$

Because

$$
\begin{gathered}
\frac{\partial g_{1}^{-1}}{\partial W_{1}}=\frac{\sqrt{3}}{4}, \quad \frac{\partial g_{1}^{-1}}{\partial W_{2}}=\frac{1}{4}, \quad \frac{\partial g_{2}^{-1}}{\partial W_{1}}=\frac{1}{4}, \quad \frac{\partial g_{2}^{-1}}{\partial W_{1}}=\frac{-\sqrt{3}}{4} \\
J=\left|\begin{array}{cc}
\frac{\sqrt{3}}{4} & \frac{1}{4} \\
\frac{1}{4} & -\frac{\sqrt{3}}{4}
\end{array}\right|=-\frac{1}{4}
\end{gathered}
$$

and $X_{1}^{2}+X_{2}^{2}=\frac{1}{4}\left(W_{1}^{2}+W_{2}^{2}\right)$, the joint pdf of $\left(W_{1}, W_{2}\right)$ is:

$$
\begin{aligned}
f_{W_{1}, W_{2}}\left(w_{1}, w_{2}\right) & =f_{X_{1}, X_{2}}\left(g_{1}^{-1}\left(w_{1}, w_{2}\right), g_{2}^{-1}\left(w_{1}, w_{2}\right)\right) \times|J| \\
& =\frac{1}{2 \pi} e^{-\frac{1}{8}\left(w_{1}^{2}+w_{2}^{2}\right)} \times\left|-\frac{1}{4}\right|=\frac{1}{8 \pi} e^{-\frac{1}{8}\left(w_{1}^{2}+w_{2}^{2}\right)} \\
& =\left(\frac{1}{2 \sqrt{2 \pi}} e^{-\frac{w_{1}^{2}}{2 \times 4}}\right) \times\left(\frac{1}{2 \sqrt{2 \pi}} e^{-\frac{w_{2}^{2}}{2 \times 4}}\right),
\end{aligned}
$$

where $-\infty<w_{1}, w_{2}<\infty$. (Note that the joint pdf is a product of two Normal pdfs.)
(c) (2pts) Because the joint pdf of $\left(W_{1}, W_{2}\right)$ is proportional to a product of two terms, one depending only on w_{1} and the other depending only on w_{2}, W_{1} and W_{2} are independent.
(d) (6pts) We can get the cdf of $Y, F_{Y}(y)$, for $y \geq 0$ by

$$
F_{Y}(y)=P(Y \leq y)=P\left(X_{1}^{2} \leq y\right)=P\left(-\sqrt{y} \leq X_{1} \leq \sqrt{y}\right)=\Phi(\sqrt{y})-\Phi(-\sqrt{y})
$$

where Φ is the cdf of $\operatorname{Normal}(0,1)$. Then, the pdf of Y is

$$
\begin{aligned}
& f_{Y}(y)=\frac{d}{d y} F_{Y}(y)=\frac{d}{d y} \Phi(\sqrt{y})-\frac{d}{d y} \Phi(-\sqrt{y}) \\
& \quad=\frac{1}{\sqrt{2 \pi}} e^{-y / 2}\left(\frac{1}{2 \sqrt{y}}\right)-\frac{1}{\sqrt{2 \pi}} e^{-y / 2}\left(-\frac{1}{2 \sqrt{y}}\right)=\frac{1}{\sqrt{2 \pi y}} e^{-y / 2}
\end{aligned}
$$

for $y \geq 0$ and $f_{Y}(y)=0$ for $y<0$.
(e) (2pts) We can write the pdf of Y as

$$
\frac{(1 / 2)^{1 / 2}}{\sqrt{\pi}} \times y^{(1 / 2)-1} \times e^{-(1 / 2) y}
$$

which is the pdf of $\operatorname{Gamma}(1 / 2,1 / 2)$ because $\Gamma(1 / 2)=\sqrt{\pi}$.
8. (a) (2pts) Let U_{1} and U_{2} be i.i.d. $\sim \operatorname{Uniform}(0,1)$, then $X=\min \left(U_{1}, U_{2}\right)$ and $Y=$ $\max \left(U_{1}, U_{2}\right)$. Therefore, for $0<x<y<1$, the joint pdf of X and Y is

$$
f_{X, Y}(x, y)=(2!) f_{U_{1}}(x) f_{U_{2}}(y)=2 .
$$

(b) (2pts) The marginal pdf of X is

$$
f_{X}(x)=\int_{x}^{1} f_{X, Y}(x, y) d y=\int_{x}^{1} 2 d y=2(1-x)
$$

for $0<x<1$, and $f_{X}(x)=0$, otherwise. Similarly, the marginal pdf of Y is

$$
f_{Y}(y)=\int_{0}^{y} f_{X, Y}(x, y) d x=\int_{0}^{y} 2 d x=2 y
$$

for $0<y<1$, and $f_{Y}(y)=0$, otherwise.
(c) (2pts) For a fixed $x \in(0,1)$, the conditional pdf of Y is

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{1}{1-x}
$$

for $x<y<1$ and $f_{Y \mid X}(y \mid x)=0$, otherwise.
(d) $(2 p t s)$

$$
E[Y \mid X=x]=\int_{x}^{1} y f_{Y \mid X}(y \mid x) d y=\int_{x}^{1} \frac{y}{1-x} d y=\frac{1}{1-x}\left(\left.\frac{1}{2} y^{2}\right|_{x} ^{1}\right)=\frac{1+x}{2}
$$

for $0<x<1$. Therefore, $E[Y \mid X]=\frac{1+X}{2}$.
(e) $(3 p t s)$

$$
\begin{aligned}
E(X Y) & =E_{X}\left[E_{Y \mid X}(X Y \mid X)\right]=E_{X}\left\{X\left[E_{Y \mid X}(Y \mid X)\right]\right\}=E_{X}\left(X \times \frac{1+X}{2}\right) \\
& =\int_{-\infty}^{\infty} x \times \frac{1+x}{2} \times f_{X}(x) d x=\int_{0}^{1} x \times \frac{1+x}{2} \times 2(1-x) d x \\
& =\int_{0}^{1}\left(x-x^{3}\right) d x=\frac{1}{4} .
\end{aligned}
$$

(f) (3pts) Because

$$
\operatorname{Var}(Y \mid X=x)=E\left(Y^{2} \mid X=x\right)-[E(Y \mid X=x)]^{2}
$$

and

$$
E\left[Y^{2} \mid X=x\right]=\int_{x}^{1} y^{2} f_{Y \mid X}(y \mid x) d y=\int_{x}^{1} \frac{y^{2}}{1-x} d y=\frac{1}{1-x}\left(\left.\frac{1}{3} y^{3}\right|_{x} ^{1}\right)=\frac{1+x+x^{2}}{3}
$$

we get

$$
\operatorname{Var}(Y \mid X=x)=\frac{1+x+x^{2}}{3}-\left(\frac{1+x}{2}\right)^{2}=\frac{x^{2}-2 x+1}{12}=\frac{(x-1)^{2}}{12}
$$

for $0<x<1$.
(g) (3pts) The variance of Y is

$$
\begin{gathered}
\operatorname{Var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}=\int_{-\infty}^{\infty} y^{2} f_{Y}(y) d y-\left[\int_{-\infty}^{\infty} y f_{Y}(y) d y\right]^{2} \\
\quad=\int_{0}^{1} y^{2}(2 y) d y-\left[\int_{0}^{1} y(2 y) d y\right]^{2}=\left(\left.\frac{1}{2} y^{4}\right|_{0} ^{1}\right)-\left(\left.\frac{2}{3} y^{3}\right|_{0} ^{1}\right)^{2}=\frac{1}{18} .
\end{gathered}
$$

And,

$$
\begin{aligned}
E & {[\operatorname{Var}(Y \mid X)]=E\left[\frac{(X-1)^{2}}{12}\right]=\int_{-\infty}^{\infty} \frac{(x-1)^{2}}{12} f_{X}(x) d x } \\
& =\int_{0}^{1} \frac{(x-1)^{2}}{12} \times 2(1-x) d x=\left(-\frac{1}{6}\right) \int_{0}^{1}(x-1)^{3} d x=\left(-\frac{1}{6}\right)\left[\left.\frac{1}{4}(x-1)^{4}\right|_{0} ^{1}\right] \\
& =\frac{1}{24}<\frac{1}{18}=\operatorname{Var}(Y) .
\end{aligned}
$$

