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In the previous lecture, we stated that the probability distribution P (x, t)
for a stochastic process satisfies the master equation,

P (x, t+ ∆t) =

∫ ∞
−∞
d∆x f(∆x)P (x′, t), (1)

where ∆x = x − x′ and f(∆x) is the probability density for the particle
to move from x′ to x within the time interval ∆t. Expanding the variable
x′ = x − ∆x in Taylor series, the above integral equation turns into the
diffusion equation. However, in the presence of non-uniform force field F (x),
the probability density f = f(∆x, x′) also depend on the starting point x′.
We shall discuss how to derive the appropriate equation when the uniformity
of the system is gone. It is interesting to note that the master equation is
similar to the propagation of wave function in quantum mechanics,

ψ(x, t′) =

∫ ∞
−∞
dx′ G(x, t;x′, t′)ψ(x′, t), (2)

where G(x, t;x′, t′) is the single-particle propagator. The wave function ap-
pears in the “master equation”, not the probability distribution.

• Smoluchowski equation

To include the dependence on the starting point x′, the master equation now
take the form,

P (x, t+ ∆t) =

∫ ∞
−∞
d∆x f(∆x, x′)P (x′, t), (3)

where x′ = x − ∆x. Expand the whole integrand f(∆x, x′)P (x′) in Taylor
series around x,

P (x, t+ ∆t) =

∫ ∞
−∞

d∆x

{
f(∆x, x)P (x, t) +

∂

∂x

[
f(∆x, x)P (x)

]
(−∆x)

+
1

2

∂2

∂x2

[
f(∆x, x)P (x)

]
(−∆x)2 + ...

}
, (4)



-HH0050- Fokker-Plank Equation 2

In the following, we truncate the series at the second order and drop all
higher-order terms. The first term just gives P (x, t) because f(∆x, x) is a
probability density (integration to unity). Treating ∆x and x as independent
variables,the remaining terms can be simplified by exchanging the order of
integration and differentiation,

P (x, t+ ∆t)− P (x, t) =− ∂

∂x

[(∫ ∞
−∞
d∆x f(∆x, x)∆x

)
P (x)

]
+

1

2

∂2

∂x2

[(∫ ∞
−∞
d∆x f(∆x, x)(∆x)2

)
P (x)

]
. (5)

Introduce the average displacement 〈∆x〉 and its variance 〈(∆x)2〉 for the
stochastic process,

〈∆x〉 =

∫ ∞
−∞
d∆x f(∆x, x)∆x = µpE(x)∆t+O[(∆t)2], (6)

〈(∆x)2〉 =

∫ ∞
−∞
d∆x f(∆x, x)(∆x)2 = 2D(x)∆t+O[(∆t)2], (7)

where E(x) = F (x)/q is the local electric field, µp is the mobility of the
charged particle and D(x) is the local diffusion constant. Taking the time
interval ∆t to be infinitesimal, the integral equation Eq. (5) is cast into the
differential form,

∂P

∂t
= − ∂

∂x

[
µpE(x)P

]
+

∂2

∂x2

[
D(x)P

]
(8)

The partial differential equation is known as the Smoluchowski equation.
The above equation has several interesting properties: (1) the existence

of probability current (2) Boltzmann distribution as a steady-state solution.
Introduce the probability current containing two parts,

J(x, t) = µpE(x)P (x, t)− ∂

∂x

[
D(x)P (x, t)

]
. (9)

The drift term is driven by the external electric field and the gradient term
arises from the spatial variations. It is easy to show that the Smoluchowski
equation can be written in the form of continuity equation,

∂P

∂t
+
∂J

∂x
= 0. (10)

What is conserved in the continuity equation? Simple, the total probability.
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Figure 1: Drifted diffusion – time evolution of the probability distribution
function P (x, t) with constant E(x) and D(x) in the Smoluchowski equation.
The initial probability distribution is P (x, 0) = δ(x) (red curve), moving to
the right at constant drift velocity (red to blue curves).

Suppose the local diffusion constant D(x) = D is uniform and the electric
field is E(x) = −dV/dx. Substituting the Bolzmann distribution,

P (x) = P0 e
−qV (x)/τ , (11)

into the definition for the probability current,

J(x) =
[
µp −Dq/τ

]
E(x)P (x) = 0, (12)

where we have employed the Einstein relation D = µpτ/q. In consequence,
the Smoluchowski equation is trivially satisfied and the Bolzmann distribu-
tion serves as its steady-state solution.

If both E(x) and D(x) are constant, the solution is relatively simple,

P (x, t) =
1√

4πDt
exp

[
−(x− udt)2

4Dt

]
, (13)

where the drift velocity ud = µpE. The time evolution of the probability
distribution is shown in Fig. 1.

• Fokker-Plank equation

We now turn to a seemingly different problem: How thermalization is achieved?
Suppose we carefully align all particles in an ideal gas to have the same mo-
mentum at t = 0. Due to inter-molecular collisions, at later time t � τc,



-HH0050- Fokker-Plank Equation 4

the system will reach the Maxwell distribution in thermal equilibrium. We
can follow the same logic and write down the dynamical equation for the
momentum distribution P (p, t). As will become clear later, thermalization
can be viewed as “confined diffusion in the momentum space”.

We start with the master equation in the integral form,

P (p, t+ ∆t) =

∫ ∞
−∞
d∆p f(∆p, p′)P (p′, t), (14)

where ∆p = p − p′ is the momentum transfer and P (p, t) is probability
density for momentum distribution. Again, expanding the variable p′ =
p − ∆p in Taylor series and truncating higher-order terms, the dynamics
of the momentum distribution P (p, t) is captured by the following partial
differential equation,

∂P

∂t
= − ∂

∂p

[
A(p)P

]
+

1

2

∂2

∂p2

[
B(p)P

]
, (15)

known as the Fokker-Plank equation. The mean A(p) and variance B(p)
within the time interval ∆t are defined as

A(p) ≡ lim
∆t→0

〈∆p〉
∆t

, (16)

B(p) ≡ lim
∆t→0

〈(∆p)2〉
∆t

. (17)

In principle, A(p) and B(p) can be computed from the inter-molecular col-
lisions at the microscopic scale. But, the calculations are messy and rather
involved. Here I choose a different route to estimate the coefficient functions.

Focusing on a particular particle, its dynamics due to inter-molecular
collisions is well captured by the Langevin equation,

dp

dt
= −γp+ f(t), (18)

where γ is due to viscosity and f(t) is the random forces due to collisions.
It is straightforward to show that γ is related to the mobility, µp = q/(γM).
The random force has a white-noise spectrum,

〈f(t)f(t′)〉 = Λ δ(t− t′), (19)

where Λ = 2γ2M2D is linearly proportional to the diffusion constant D. In-
tegrate the Langevin equation to obtain the time dependence of momentum,

〈∆p〉 = −γp∆t+

∫ t+∆t

t

dt′〈f(t′)〉 = −γp∆t. (20)
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Figure 2: Thermalization – time evolution of the probability distribution
P (p, t) from the Fokker-Plank equation in Langevin limit.The initial proba-
bility distribution P (p, 0) = δ(p−p0) (red curve) is sharp with the same mo-
mentum p0, gradually dissipating (from red to blue curves) into the Maxwell-
Boltzmann distribution and reaching thermal equilibrium.

By comparison, the mean of momentum change within ∆t is

A(p) ≡ lim
∆t→0

〈∆p〉
∆t

= −γp. (21)

One can also compute the variance of the momentum change,

〈(∆p)2〉 = γ2p2(∆t)2 +

∫ t+∆t

t

dt1

∫ t+∆t

t

dt2 〈f(t1)f(t2)〉

= γ2p2(∆t)2 + Λ∆t. (22)

The first term can be ignored because it is of order (∆t)2. The second term
gives a constant variance of the momentum change,

B(p) ≡ lim
∆t→0

〈(∆p)2〉
∆t

= Λ = 2γ2M2D. (23)

The Fokker-Plank equation now takes a simpler form,

∂P

∂t
= γ

∂

∂p
(pP ) + γ2M2D

∂2P

∂p2
. (24)

The above partial differential equation can be solved analytically and the
probability density for momentum distribution is

P (p, t) =
1√

2π∆(t)
exp

[
−
(
p− pint

)2

2∆(t)

]
, (25)
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pint(t) = p0 e
−γt, ∆(t) = γM2D

(
1− e−2γt

)
(26)

The time evolution of the probability distribution is shown in Fig. 2. In the
long time limit, the memory of the initial momentum p0 is washed away and
the variance reaches a constant value,

〈(∆p)2〉 = γM2D. (27)

Equipartition theorem gives 〈(∆p)2〉 = Mτ . Combined with µp = q/(γM),
we arrive at the Einstein relation again, D = µpτ/q. As one can tell from
the analytic solution, thermalization is rather similar to diffusion except the
time dependences of the drift and variance are different.

• diffusion process

By now, you should appreciate the power of Fokker-Plank equation. In fact,
the idea can be generalized to include both generalized coordinates and mo-
menta at the same time. To describe a system with a collection of random
variables X(t) = (X1, X2, ..., Xn). If the following two conditions are satis-
fied, the stochastic dynamics of X(t) is called diffusion process.

The first condition is that the process must be Markovian. In other words,
the conditional probability

P (x, t|xi, ti;xi−1, ti−1; . . . ;x0, t0) = P (x, t;xi, ti) (28)

that X(t) = x, given that X(tk) = xk,..., X(t0) = x0 with t0 < t1 <
... < ti < t, depends only on (xi, ti). The above argument may seem rather
abstract to you at first glance but it is the foundation of the master equation
we wrote down in previous sections. In layman language, there is no memory
effect in the chain of the stochastic events.

The second condition is the existence of the means and variances for all
variables in the short time limit,

Ai(x) ≡ lim
∆t→0

〈∆xi〉
∆t

, (29)

Bij(x) ≡ lim
∆t→0

1

∆t
〈∆xi∆xj〉. (30)

When both conditions are satisfied, starting from the integral master equa-
tion and expanding it in Taylor series, the Fokker-Plank equation reads,

∂P

∂t
= −

n∑
i=1

∂

∂xi

[
A(x)P (x, t)

]
+

1

2

n∑
i=1

n∑
j=1

∂2

∂xi∂xj

[
Bij(x)P (x, t)

]
. (31)
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Note that the Fokker-Plank equation is also known as the forward Kol-
mogorov equation. It can be applied to a Brownian particle in one dimension
subjected to external force. Introduce the random variable X = (x, p). By
applying the same reasoning, one can compute the means and variances,

A1 = lim
∆t→0

1

∆t
〈∆x〉 =

p

M
,

A2 = lim
∆t→0

1

∆t
〈∆p〉 = qE(x)− γp,

B22 = lim
∆t→0

1

∆t
〈(∆p)2〉 = Λ, (32)

all other terms vanishes at order of ∆t. Thus, the generalized diffusion
process satisfies the Fooker-Plank equation,

∂P

∂t
= − ∂

∂x

[ p
M
P
]
− ∂

∂p

[(
qE − γp

)
P
]

+ γMτ
∂2P

∂p2
, (33)

where we have exploited the Einstein relation to eliminate Λ = 2γ2M2D =
2γMτ . This equation is called the Klein-Kramers equation.


