Chapter 5
Trees

4 p.210 Program 5.4)

Non-recursive Inorder Traversal

Need a stack (because we have no pointer that points to parent)
s: stack.

current_node: tree node pointer.

void iter_inorder(tree_pointer current_node)
{
do {
while(current_node = NULL) {
push(current_node, s);
current_node = current_node->left_child;
}
if(Not stack_empty(s)) then {
current_node = pop(s);
printf("%d", current_node->data);
current_node = current_node->right_child;
}
else
done = true;

}

while (done == false);

A p. 211 Program 5.5)

Non-recursive Levelorder Traversal

Need a queue.
q: queue

current_node: tree node pointer.

void level_order(tree_pointer current_node)
{
if(current_node == NULL) then
return (emptytree());
else {
addq(current_node, q);
while(Not empty(q)) {
current_node = deleteq(q);
printf("%d", current_node->data);
if(current_node->left_child '= NULL) then
addq(current_node->left_child, q);
if(current_node->right_child != NULL) then
addq(current_node->right_child, q);

Chapter6 Graphs

Un-directed graph

A p. 295 Program 6.7)

Kruskal algorithm

T = NULL,; /*edge set*/
while(|T| < n-1) {
Choose an edge (V, W) from E of least cost.
delete (V, W) from E
if((V, W) doesn't create a cycle)
then add (V,W)to T
else discard(V, W)

N oo g &~ w bR

A p. 297 Program 6.8)

Prim’s algorithm

T =NULL /*edge set*/

TV ={1} [*vertices set*/

while (|T] < n-1){
Let (u, v) be a least cost edge such thatu in TV and v not in TV;
T=T U {(uv)}
V=TV U {v};

N o g~ w bR

update the near_to_tree array.
}
Without step 7: time complexity : O(n*e)
n: number of vertices
e: number of edges. In each iteration, at most e edges are examined

With step 7: time complexity : O(n)

A p. 298 Figure 6.24 6.25)

Sollin's algorithm

Good for parallel processing.

stepl : Initially all vertices are tree by itself

While (there is more than one tree) {

step2: For each tree, select one minimum cost edge which has one end in the tree and the other

outside the tree

step3: Delete the edge with the duplicate copies and if two edges with the same cost connecting
two trees, retain only one (to avoid the situation that two trees select to different edges that

have the same cost)

step4: add the edges
}

