國立交通大學 101 學年度碩士班考試入學試題

科目:線性代數(4032)(4042)

考試日期:101年2月17日 第 2節

系所班別:應用數學系

組別:應數系甲組,乙組

第 | 頁,共 | 頁

【不可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

- 1. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $T(a_1, a_2) = (a_1 a_2, a_1, 2a_1 + a_2)$. Let $\beta = \{(1, 0), (0, 1)\}$ be the standard ordered basis for \mathbb{R}^2 and $\gamma = \{(1, 1, 0), (0, 1, 1), (2, 2, 3)\}$.
 - (a) (6%) Prove that γ is a basis for \mathbb{R}^3 .
 - (b) (6%) Compute $[T]^{\gamma}_{\beta}$, the matrix representation of T in the ordered bases β and γ .
- 2. (12%) Let V and W be vector spaces over a field F. Let $T:V\to W$ be a function satisfying T(x+y)=T(x)+T(y). If F is the set of rational numbers, then prove or disprove that T is a linear transformation from V to W.
- 3. Let V and W be finite dimensional vector spaces and let $T: V \to W$ be linear and one-to-one.
 - (a) (7%) Let $\alpha = \{v_1, v_2, \dots, v_n\}$ be a basis for V. Prove that $\{T(v_i)\}_{i=1}^n$ is linearly independent.
 - (b) (7%) Let the dimension of V be denoted by $\dim(V)$. Prove that $\dim(V) = \dim(W)$.
- 4. (12%) Let A be an $m \times n$ matrix with rank k. Suppose that B is an $m \times m$ matrix such that BA = O, where O is the zero matrix. Prove that $\operatorname{rank}(B) \leq m k$.
- 5. Let V be a vector space and let $T:V\to V$ be linear. If $B=\begin{bmatrix}O&A\\A&O\end{bmatrix}$ is the matrix representation of T, where O is the $n\times n$ zero matrix and A is an $n\times n$ matrix whose entries are all equal to one, then
 - (a) (5%) find the range of T;
 - (b) (5%) find the nullity of T;
 - (c) (5%) find all eigenvalues of T.
- 6. (15%) Let $A \in \mathbb{R}^{n \times n}$ be nonsingular, $I \in \mathbb{R}^{k \times k}$ be an identity matrix, and $U, V \in \mathbb{R}^{n \times k}$, where $k \leq n$. Prove that if $I + V^{\top}A^{-1}U$ is invertible, then

$$(A + UV^{\mathsf{T}})^{-1} = A^{-1} - A^{-1}U(I + V^{\mathsf{T}}A^{-1}U)^{-1}V^{\mathsf{T}}A^{-1}.$$

- 7. Let A be an $n \times n$ anti-diagonal matrix (i.e., all the entries are zero except those on the diagonal going from the lower left corner to the upper right corner). If all anti-diagonal entries of A are one, then
 - (a) (5%) find the trace of A;
 - (b) (5%) compute A^2 ;
 - (c) (5%) find the minimal polynomial of A;
 - (d) (5%) find the Jordan canonical form of A.