- 1 (15 pts.) Let T be a linear transformation from \mathbb{R}^n into \mathbb{R}^n .
 - (1) Show that there exists a unique $n \times n$ matrix A such that T(x) = Ax for all x in \mathbb{R}^n .
 - (2) If A is invertible, show that T is one-to-one and onto.
 - (3) Let K be the kernel of T. Find the dimension of K in terms of the matrix A and verify your answer.
- 2 (20 pts.) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T([x,y,z]) = [x+y,x+z,y-z].
 - (1) Verify that T is a linear transformation.
 - (2) Find the standard matrix representation of T.
 - (3) Describe, in terms of the matrix A, the class of all matrix representations of T.
 - (4) Is every matrix representation of T diagonalizable? Justify your answer.
- 3 (15 pts.) Let A be an $n \times n$ real matrix.
 - (1) Prove that the eigenvalues of the matrix A are the same as the eigenvalues of A^T . Here A^T denotes the transpose of A.
 - (2) Show by a counterexample that an eigenvector of A need not be an eigenvector of A^T.
 - (3) Let v_1 and v_2 be eigenvectors of A with corresponding eigenvalues λ_1 and λ_2 , respectively. Prove that, if $\lambda_1 \neq \lambda_2$, then v_1 and v_2 are independent vectors.
- 4 (10 pts.) Let $y \neq 0$ be a fixed column vector in \mathbb{R}^n and set $A = yy^T$. Then A is an $n \times n$ matrix.
 - (1) Show that $\lambda = 0$ is an eigenvalue of A of multiplicity n-1.
 - (2) What is the single nonzero eigenvalue?
- 5 (15 pts.) Let W be a subspace of \mathbb{R}^n and $dim(W) = k \le n$.
 - (1) The set of all vectors in Rⁿ that are orthogonal to every vector in W is the orthogonal complement of W, and is denoted by W[±]. Show that W[±] is a vector subspace. What is the dimension of W[±]?
 - (2) Show that every vector b in \mathbb{R}^n can be expressed uniquely in the form $b = b_W + b_{W^{\perp}}$ for b_W in W and $b_{W^{\perp}}$ in W^{\perp} . We call b_W the projection of b on W.
 - (3) For every vector $b \in \mathbb{R}^n$, show that the projection b_W of b on W is the unique vector in W that is closest to b (that is, $w = b_W$ minimizes the Euclidean distance ||b w|| from b to W for all w in W.)
- 6 (15 pts.) Find an orthogonal diagonalization of the matrix

$$A = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix},$$

that is, find an orthogonal matrix C such that $C^{-1}AC$ is a diagonal matrix D.

7 (10 pts.) Assume that b is a column vector in \mathbb{R}^n and A is a real, symmetric, positive definite matrix of order n. Define a function $f(x): \mathbb{R}^n \to \mathbb{R}$ by $f(x) = \frac{1}{2}x^TAx - b^Tx$. Show that the unique minimum of f(x) is given by $x = A^{-1}b$. (Hint: Consider n = 1 first.)