國立交通大學九十一學年度碩士班入學考試試題

科目名稱:線性代數(291,301)

考試日期:91年4月21日第1節

系所班別:應用數學系 組別:甲組/乙組

第 / 頁, 共 2 頁

*作答前,請先核對試題、答案卷(試卷)與准考證上之所組別與考試科目是否相符!!

- 1. Let A be an $m \times n$ matrix, and let **b** be a column vector such that $A\mathbf{x} = \mathbf{b}$ has a unique solution.
- (i) (4%) Prove that $m \geq n$.
- (ii) (3%) If m = n, must the system $A\mathbf{x} = \mathbf{b}$ always have a solution for every choice of \mathbf{b} ? Either prove or produce a counter-example.
- (iii) (3%) Answer part (ii) for the case where m > n.
- 2. (10%) Let $\langle \cdot, \cdot \rangle$ be an inner product on \mathbb{R}^n . If $A \in M_{n \times n}(\mathbb{R})$ is such that $\langle Av, Av \rangle = \langle v, v \rangle$ for all $v \in \mathbb{R}^n$, is A necessarily an orthogonal matrix? Either prove or produce a counter-example.
- 3. Let $A \in M_{n \times n}(\mathbb{C})$ be a Hermitian matrix $(A^* = A)$.
- (i) (5%) Let $v \in \mathbb{C}^n$. Show that $A^k v = 0$ for some k > 1 implies Av = 0.
- (ii) (5%) Let λ be a characteristic root (eigenvalue) of A. Show that $W_{\lambda} = E_{\lambda}$, where $W_{\lambda} := \{v \in \mathbb{C}^n \mid (A \lambda I)^k v = 0 \text{ for some } k \geq 1\}$ is the generalized eigenspace of A corresponding to λ , $E_{\lambda} := \{v \in \mathbb{C}^n \mid (A \lambda I)v = 0\}$ is the eigenspace of A, corresponding to λ .
- 4. (10%) Let A be an $m \times n$ matrix. Prove that $\operatorname{rank}(AA^T) = \operatorname{rank}(A^TA) = \operatorname{rank}(A)$. (A^T is the transpose of A.)
- 5. (10%) If $A \in M_{3\times 3}(\mathbb{R})$ satisfies $A^3 = 0$, show that there is an invertible $C \in M_{3\times 3}(\mathbb{R})$ such that $C^{-1}AC$ is an upper triangular matrix. What is the diagonal of $C^{-1}AC$?
- 6. Let V be a vector space over \mathbb{R} . Let $T:V\longrightarrow V$ be a linear transformation and $I:V\longrightarrow V$ the identity.
- (i) (5%) Show that $Ker(T I) \bigcap Ker(T + I) = \{0\}.$
- (ii) (5%) Show that $T^2=I$ if and only if V and $\mathrm{Ker}(T-I)\oplus\mathrm{Ker}(T+I)$ are isomorphic. (Note: $\mathrm{Ker}=\mathrm{kernel}$)

國立交通大學九十一學年度碩士班入學考試試題

<u>科目名稱:線性代數(291,301)</u> 考試日期:⁹¹ 年 4 月 21 日 第 1 節

系所班別:應用數學系 組別:甲組/乙組

2頁,共2頁

*作答前,請先核對試題、答案卷(試卷)與准考證上之所組別與考試科目是否相符!!

7. (10%) Let A and B be two 3×3 matrices given by

$$A = \begin{bmatrix} 8 & 4 & -4 \\ 4 & 8 & 4 \\ -4 & 4 & 8 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 6 & 6 & -6 \\ 6 & 9 & -3 \\ -6 & -3 & 9 \end{bmatrix}.$$

Determine whether the two matrices A and B can represent the same linear transformation $T:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ with respect to different pairs of ordered bases. (Answer with your computations.)

8. (10%) Let V be a finite-dimensional vector space over \mathbb{R} . Let $T:V\longrightarrow V$ be a linear transformation. Suppose W is a linear subspace of V, which is mapped into itself by T. Show that if V has a basis consisting of characteristic vectors (eigenvectors) of T, then W has a basis consisting of characteristic vectors of the restriction $T|_{W}$, of T to W.

9. Let U and V be two vector spaces over \mathbb{R} . Let $T:U\longrightarrow V$ be a linear transformation.

(i) (5%) Prove that $Ker(T) = \{0\}$ if and only if T is one-to-one.

(ii) (5%) If T is one-to-one, show that the inverse map $T^{-1}:T(U)\longrightarrow U$ can be defined and T^{-1} is a linear transformation.

10. Let $\mathcal{P}_2(\mathbb{R})$ be the inner product space of all polynomials in x of degree ≤ 2 with real coefficients; for $p, q \in \mathcal{P}_2(\mathbb{R}), \langle p, q \rangle_0 := \int_{-1}^1 p(x)q(x)dx$.

(i) (5%) Find an orthonormal basis for $\mathcal{P}_2(\mathbb{R})$.

(ii) (5%) Find an isomorphism T from $\mathcal{P}_2(\mathbb{R})$ into \mathbb{R}^3 such that for all $p, q \in \mathcal{P}_2(\mathbb{R})$, $< p, q>_0 = < T(p), T(q) >$, where $< \cdot, \cdot >$ is the standard inner product on \mathbb{R}^3 .