國立交通大學九十二學年度碩士班入學考試試題

科目名稱:線性代數(361)37 考試日期:92年4月19日 第 1 節

系所班別:應用數學系 組別:甲組/乙紀 第 / 頁,共 2 *作答前,請先核對試題、答案卷 (試卷) 與准考證上之所組別與考試科目是否相符!!

Notations: Let R be the field of real numbers; R^n the vector space of dimension n over R; $P_n(R)$ the family of all polynomials with real coefficients and with degree at most n, and $M_n(R)$ the family of all $n \times n$ matrices over R.

1. (10%) Are
$$U = \{(x, y, z) \in R^3 | |x + 2y - 3z| + |3x + 2y - z| = 0\},$$

$$V = \{(x, y, z) \in R^3 | [x \quad y] \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = 0\},$$

$$W = \{(x, y, z) \in R^3 | [1 \quad 2 \begin{bmatrix} x & y \\ y & z \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = 0\}$$

subspaces of R^3 , justify your answer. Find their dimensions over R, give their geometric interpretations if they are.

- 2. (10%) Show that the polynomials f(x) = 1, g(x) = x 1, and $h(x) = (x 1)^2$ form a base of $P_2(R)$ over R. Find the coordinate of the vector $\alpha(x) = 2x^2 5x + 6$ relative to this base.
- 3. (15%)
 - a. (5%) Find the dimension of $U \cap W$ over R, where

$$U = \{(x_1, x_2, x_3, x_4, x_5) \in R^5 | x_1 - x_3 - x_4 = 0, x_1 + x_2 - 2x_3 - x_4 = 0\}, \text{ and}$$

$$W = \{(x_1, x_2, x_3, x_4, x_5) \in R^5 | x_2 = x_3 = x_4, x_1 + x_5 = 0\}.$$

- b. (5%) If T is a linear transformation from R^2 into R^3 such that $T(1,3) = (2,1,\alpha)$, and $T(2,1) = (3,\beta,6)$, determine (α,β) so that T is not one to one.
- c. (5%) If the eigenvalues of $A \in M_2(R)$ are 0 and 1, and their corresponding eigenvectors are $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$ respectively, find the matrix A.
- 4. (15%) Let $T(f(x)) = f(2) f(1)x + \frac{1}{2}f''(0)x^2$ be a function from $P_2(R)$ into itself. Find $T^{36}(x^2 + x + 1)$, $T^{89}(4x^2 + 19x + 3)$ respectively; and then find a general expression for $T^n(f(x))$.

國立交通大學九十二學年度碩士班入學考試試題

科目名稱:線性代數(361)37/ 考試日期:92年4月19日 第 1 節

系所班別:應用數學系 組別:甲組、乙<u>飽</u> 第 2 頁, 共 2 頁 *作答前, 請先核對試題、答案卷(試卷) 與准考證上之所組別與考試科目是否相符!!

5. (12%)

a. (2%) Given $A, B \in M_n(R)$, what does it mean to say that A is similar to B?

Write $A \sim B$ if A is similar to B.

- b. (5%) Show that ~ is an equivalence relation.
- c. (5%) Suppose that $A \sim B$. Is it true that $\det A = \det B$? Is it true that $A^k \sim B^k$ for all $k = 1, 2, 3, \dots$? Answer true or false. If true, prove it. If false, give a counterexample with n = 2.
- 6. (14%) Suppose $A \in M_n(R)$ is orthogonal, namely $A^T A = I$. Here A^T is the transpose of A.
 - a. (3%) What are the possible values of det A?
 - b. (5%) Suppose that $Av = \alpha v$ for some nonzero vector v. What are all the possible values of the scalar α ? Explain with proof and examples.
 - c. (6%) Decide if each of the matrices A^{-1} , 2A, A^2 is orthogonal, answer yes or no. If yes, prove it. If no, no proof is needed.
- 7. (10%) Let $A = (a_{ij}) \in M_n(R)$ with det A = 5. Suppose that

$$b_{ij} = a_{2j}, \ b_{2j} = a_{1j}, \ b_{ij} = a_{ij} \text{ for all } i \ge 3, j \ge 1.$$

$$c_{ii} = a_{ii}, d_{ii} = 3a_{ii}$$
 for all $i, j \ge 1$.

$$e_{i1} = e_{i2} = a_{i1}, e_{ii} = a_{ii}$$
 for all $i \ge 1, j \ge 3$.

$$f_{1i} = 2a_{1i} + 3a_{2i}$$
, $f_{ii} = a_{ii}$ for all $i \ge 2, j \ge 1$.

Find the determinants of $B = (b_{ij}), C = (c_{ij}), D = (d_{ij}), E = (e_{ij}), F = (f_{ij})$. No proof is needed.

- 8. (14%) Let V be a vector space over R with basis $\{s,t,u,v,w\}$, and $T:V\to V$ a linear transformation. Suppose that exactly 3 vectors of $\{0, u, v, w, 2v + 3w\}$ are in the image of T.
 - a. (5%) What are the possible values of rank T? Explain.
 - b. (9%) Suppose in addition that $T^2 = 0$. What is the nullity of T? Give a nonzero vector in the kernel of T. Explain.