國立交通大學 93 學年度碩士班入學考試試題

科目名稱:線性代數(361) 考試日期:93年4月18日 第1節

系所班別:應用數學系 組別:乙組 第一頁,共二頁

*作答前,請先核對試題、答案卷(試卷)與准考證上之所組別與考試科目是否相符!!

1. Let A, B be both $n \times n$ real matrices.

(i) (2%) What is the definition of the exponential, e^A , of A?

(ii) (6%) Does $e^{A+B} = e^A e^B$ always hold? If it does, then give a proof; otherwise, give a counterexample. If it is the latter case, find a sufficient condition such that the above statement is true.

(iii) (10%) Compute e^A for A equal to the matrices

$$\begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$
 and
$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}.$$

2. (i) (2%) What is the definition of tr(A), the trace of a square matrix A?

(ii) (3%) If A and B are both $n \times n$ real matrices, prove that tr(AB) = tr(BA).

(iii) (5%) Find the trace of $I + A + A^2 + ... + A^{28}$ for

$$A = \left[\begin{array}{cc} 4 & 3 \\ 2 & 3 \end{array} \right].$$

3. Let A, B be both $n \times n$ real matrices and assume that A is invertible.

(i) (5%) Show that AB has the same nullity and rank as B.

(ii) (5%) What is the relation between the set of eigenvalues for AB and that for BA?

4. Let V_1, V_2, \ldots, V_m be nonzero subspaces of \mathbb{R}^n .

(i) (2%) What is the meaning of saying that $V_1 + V_2 + \ldots + V_m$ is a direct sum?

(ii) (5%) Show that $V_1 + V_2$ is a direct sum if and only if $V_1 \cap V_2 = \{0\}$.

(iii) (5%) If $V_1 \cap V_2 = V_2 \cap V_3 = V_3 \cap V_1 = \{0\}$, is the sum $V_1 + V_2 + V_3$ direct? Either give a proof or a counterexample.

5. Let V be the vector space of all polynomials p(x) with degree at most two, and let $T: V \to V$ be the linear transformation $T(p(x)) = \frac{d}{dx}p(x)$.

(i) (8%) Prove that $p_1(x) = -x + 1$, $p_2(x) = x + 1$ and $p_3(x) = x^2 + 1$ form a basis of V.

(ii) (7%) Find the matrix of T in the basis $\{p_1, p_2, p_3\}$ of V in (i).

6. (i) (10%) If A and B are $n \times n$ complex matrices such that $x^*Ax = x^*Bx$ for all vectors x in C^n , then prove that A = B.

國立交通大學 93 學年度碩士班入學考試試題

科目名稱:線性代數(361) 考試日期:93年4月18日 第 1 節

系所班別:應用數學系 組別:乙組 第二頁,共二頁

*作答前,請先核對試題、答案卷(試卷)與准考證上之所組別與考試科目是否相符!!

- (ii) (5%) If A and B are $n \times n$ real matrices satisfying $x^t A x = x^t B x$ for all x in \mathbb{R}^n , is it still true that A = B? Either give a proof or a counterexample.
- 7. (i) (5%) Prove that the eigenvalues of a Hermitian matrix $(A^* = A)$ are all real.
 - (ii) (5%) What can you say about the eigenvalues of a unitary matrix $(A^*A = I)$? Prove your assertion.
- 8. Let the matrix

$$A = \left[\begin{array}{cc} 3 & 1 \\ -1 & 1 \end{array} \right].$$

- (i) (4%) Find the characteristic polynomial and minimal polynomial of A.
- (ii) (4%) Use the minimal polynomial of A in (i) to express A^{100} as a linear combination of A and I.
- (iii) (2%) Use (ii) to compute A^{100} .