國立交通大學 94 學年度碩士班入學考試試題

考試日期:94年4月16日 第1節

<u>系所班別:應用數學系</u> 組別:甲組,乙組,第

*作答前,請先核對試題、答案卷(試卷)´與准考證上之所組別與考試科目是否相符!!

Notations:

1. F = R or C.

2.
$$F^{(n)} = \text{the set of all column vectors} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$
, where $a_i \in F$

- 3. $M_n(F)$ = the set of all square matrices of dimension $n \times n$ with each elements in F.
- 1. (a) (5 points) State the definition of a basis v_1, v_2, \dots, v_n of
 - (b) (5 points) Let T be a linear transformation on $F^{(n)}$ and v_1 , v_2, \dots, v_n be a basis for $F^{(n)}$. Define the matrix of T in the basis v_1, v_2, \cdots, v_n .
 - (c) (5 points) If you know the matrix A of a linear transformation T in the basis v_1, v_2, \dots, v_n of $F^{(n)}$. What is the matrix B of T in terms of A in the basis $v_n, v_{n-1}, \cdots, v_1$ of $F^{(n)}$?
- 2. (a) (5 points) Let $A \in M_n(F)$. State the definition of the minimal polynomial of A.
 - (b) (5 points) Prove that the minimal polynomial of A is unique.
 - (c) (5 points) Prove that every characteristic root (eigenvalue) of A is a root of the minimal polynomial of A.
- 3. (a) (5 points) State the definition of a subspace of $F^{(n)}$.
 - (b) (5 points) For $A \in M_n(F)$, let V_a be the set $\{v \in F^{(n)} : v \in F^{(n)} : v$ $(A-aI)^k v = 0$ for some positive integer k depending on v, where $a \in F$. Prove that V_a is a subspace of $F^{(n)}$.
 - (c) (5 points) Let $v \in V_a$ and l be the first integer such that $(A-aI)^{l}v=0$. Prove that $v,(A-aI)v,\cdots,(A-aI)^{l-1}v$ are linearly independent.
 - (d) (5 points) If $a \neq b$ are in F, show that $V_a \cap V_b = \{0\}$.

國立交通大學 94 學年度碩士班入學考試試題

10201

科目名稱:線性代數(0191) 考試日期:94年4月16日 第 1 節

系所班別:應用數學系 組別:甲組、乙組 第 2 頁,共 2 頁

*作答前,請先核對試題、答案卷(試卷)與准考證上之所組別與考試科目是否相符!!

- 4. Determine whether the statement is true or false. If it is true, explain why. If it is false, give a counterexample.
 - (a) (5 points) If A and B are $n \times n$ real matrices and $B \neq O$, then det(A + xB) = 0 for some x in R.
 - (b) (5 points) If A is an $n \times n$ real matrix, then the nullity of A equals the nullity of the transpose A' of A.
 - (c) (5 points) For any $n \times n$ real matrix A, A'A = AA', where A' is the transpose of A.
- 5. If V is a finite dimensional vector space, $T:V\to V$ is a linear transformation such that $T^3-3T^2+3T-I=O$, where $O:V\to V,\,O(v)=0$ for all $v\in V$.
 - (a) (5 points) Show that there is a $v \neq 0$ in V such that T(v) = v.
 - (b) (5 points) Show that T is invertible.
 - (c) (5 points) Let $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$. Show that A is invertible, and express A^{-1} as a polynomial in A with real coefficients.
- 6. Let A be an $m \times n$ real matrix, and let A' be the transpose of A.
 - (a) (5 points) Show that if m = 2 and n = 4, then the determinant of A'A is 0.
 - (b) (5 points) Write down certain conditions on A, m and n which will ensure that the determinant of A'A is nonzero.
 - (c) (5 points) Show that if v_1, v_2, \dots, v_n are linearly independent vectors of \mathbb{R}^n , then the determinant of

$$\begin{bmatrix} (v_1, v_1) & (v_1, v_2) & \cdots & (v_1, v_n) \\ (v_2, v_1) & (v_2, v_2) & \cdots & (v_2, v_n) \\ \cdots & \cdots & \cdots & \cdots \\ (v_n, v_1) & (v_n, v_2) & \cdots & (v_n, v_n) \end{bmatrix}$$

is positive, where (,) is the standard inner product of \mathbb{R}^n .

(d) (5 points) Is there any relationship between the rank of A'A and the rank of A?