國立交通大學 95 學年度碩士班考試入學試題

科目:線性代數(4061)

考試日期:95年3月12日 第1節

系所班別:應用數學系 組別:應數所乙組在職生 第 / 頁,共 2 頁

**作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!

Notations.

- (1) The letter $\mathbb R$ denotes the set of real numbers. Hence, the notation $\mathbb R^n$ represents the usual Euclidean space of dimension n.
- (2) The identity matrix of size n is denoted by I_n .
- (3) For a matrix A, we let A^t denote the transpose of A, $\operatorname{tr} A$ the trace of A, and |A| the determinant of A. For a nonsingular square matrix B, the notation B^{-1} means the inverse of B.
- (4) For a given vector space \mathcal{V} , the notation $\dim \mathcal{V}$ denotes the dimension of \mathcal{V} . If S and T are subspaces of \mathcal{V} , then S+T denotes the subspace $\{u+v:u\in S,v\in T\}$.
- (5) If T be a linear transformation, then KerT is the kernel of T, while ImT is the image of T.
- (6) The notation $M_n(\mathbb{R})$ represents the set of all $n \times n$ matrices over \mathbb{R} .

Problems.

1. (15 points.) Let ${\cal U}$ be the solution space of

$$x_1 - x_2 + x_3 - x_4 = 0$$

in \mathbb{R}^4 and $\mathcal V$ be the solution space of

$$x_1 -2x_2 + x_4 = 0$$

 $2x_1 -x_2 + x_3 - x_4 = 0$
 $x_2 - x_3 - x_4 = 0$

in \mathbb{R}^4 . Is there a linear transformation $T: \mathbb{R}^4 \mapsto \mathbb{R}^4$ so that Tu = u for all $u \in \mathcal{U}$ and $KerT = \mathcal{V}$? If so, represent T in matrix with respect to a basis of your choice for \mathbb{R}^4 . Justify your answer.

2. (15 points.) Let

$$B = \begin{pmatrix} 1 & 3 & -3 \\ 0 & 4 & 5 \\ 0 & 0 & 9 \end{pmatrix}.$$

Find all 3×3 real matrices A such that $A^2 = B$. Justify your answer.

- 3. (10 points.) Let A be a real 2×2 matrix with positive entries. Prove or disprove that there is an eigenvector v of A such that its components are all positive.
- 4. (10 points.) Prove that for $n \geq 2$

$$\begin{vmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \\ \vdots & \vdots & & \vdots \\ x_1^{n-2} & x_2^{n-2} & \dots & x_n^{n-2} \\ x_1^n & x_2^n & \dots & x_n^n \end{vmatrix} = \left(\sum_{j=1}^n x_j\right) \begin{vmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \\ \vdots & \vdots & & \vdots \\ x_1^{n-2} & x_2^{n-2} & \dots & x_n^{n-2} \\ x_1^{n-1} & x_2^{n-1} & \dots & x_n^{n-1} \end{vmatrix}.$$

國立交通大學 95 學年度碩士班考試入學試題

科目:線性代數(4061) 考試日期:95年3月12日 第 1 節

系所班別:應用數學系 組別:應數所乙組在職生 第 ② 頁,共 ② 頁

**作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!

5. Let $\mathcal V$ be a vector space of finite dimension. Let S, T, and U be vector subspaces of $\mathcal V$. Prove or disprove (by giving a counterexample) the following two formulas.

(1) (10 points.) $\dim(S+T) = \dim S + \dim T - \dim(S \cap T)$.

(2) (10 points.) $\dim(S+T+U) = \dim S + \dim T + \dim U - \dim(S \cap T) - \dim(T \cap U) - \dim(U \cap S) + \dim(S \cap T \cap U).$

6. (1) (3 points.) Prove that any square matrix can be written as a sum of a symmetric matrix and a skew-symmetric matrix.

(2) (6 **points.**) Let the linear transformation $T: M_n(\mathbb{R}) \mapsto M_n(\mathbb{R})$ be defined by $T(A) = A^t$. Determine the eigenvalues and eigenspaces of T.

(3) (6 points.) Determine whether T is diagonalizable. If yes, diagonalize it; if not, prove it is not.

7. Let

$$A := \begin{pmatrix} 3 & -2 & -2 \\ -2 & 0 & 1 \\ -2 & 1 & 0 \end{pmatrix}.$$

(1) (5 points.) Find a matrix P such that $P^{-1}AP$ is diagonal.

(2) (5 points.) Fird the maximum of X^tAX among all $X \in \mathbb{R}^3$ subject to $X^tX = 1$. Give an example of X that attains the maximum. Justify your answer.

(3) (5 points.) Find the minimum of $\operatorname{tr}(Y^tAY)$ among all 3×2 matrices Y subject to $Y^tY=I_2$. Give an example of Y that attains the minimum. Justify your answer.