國立臺灣大學100學年度碩士班招生考試試題

科目:線性代數(A)

題號:56

題號: 56 共 / 頁之第 <u>全</u> 頁

(1) (15%) Find all possible $(w, x, y, z) \in \mathbb{R}^4$ satisfying w + 2x + 2z = 27 3w + 5x - y + 6z = 65 2w + 4x + y + 2z = 532w - 7y + 11z = -3

(2)(20%)

- (a) If A and B are 3×3 real matrices such that AB = -BA, then at least of one of A and B is not invertible. Prove or disprove this statement.
- (b) If A and B are 4×4 real matrices such that AB = -BA, then at least of one of A and B is not invertible. Prove or disprove this statement.
- (3)(15%) Consider the vector space of polynomials of degree at most 7:

$$V = \{a_0 + a_1 x + \dots + a_6 x^6 + a_7 x^7 \mid a_0, \dots, a_7 \in \mathbb{R}\}.$$

Show that for each $g(x) \in V$, there exist unique $a_0, a_1, \dots, a_7 \in \mathbb{R}$ so that the equality

$$\sum_{i=0}^{7} a_i f(i) = \int_0^1 f(x)g(x)dx$$

holds for all $f(x) \in V$, and conversely, for every $a_0, a_1, \dots, a_7 \in \mathbb{R}$, there exists a unique $g(x) \in V$ so that the above equality holds for all $f(x) \in V$.

(4) (15%) Calculate the volume of the parallelepiped:

$$P = \{\alpha x + \beta y + \gamma z \mid \alpha, \beta, \lambda \in [0,1]\}$$

spanned by x = (2,0,1,1,0), y = (0,0,2,1,2), z = (1,1,1,1,1) in the 5-dimensional real Euclidean space.

- (5) (20%) Suppose A is a real 4×4 matrix satisfying $A^2 + I_4 = 0$. Find all possible Jordan canonical forms of A. Here I_4 denote the identity matrix.
- (6) (15%) Denote the standard inner product of $a,b \in \mathbb{R}^n$ by $\langle a,b \rangle$ and denote $\|a\|^2 = \langle a,a \rangle$, $S = \{a \in \mathbb{R}^n \mid 1 = \|a\|\}$. Let A be a real $n \times n$ matrix and consider the function $f(x) = \langle x,Ax \rangle, x \in S$. Suppose $a \in S$ and there exists a positive number δ such that $f(a) \geq f(x)$ for all $x \in S$ satisfying $\|x a\| < \delta$. Can we conclude that $f(a) \geq f(x), \forall x \in S$? Prove or disprove it.

試題隨卷繳回