60

國立臺灣大學101學年度碩士班招生考試試題

科目:線性代數(A)

節次: 1

顯珠: 60

※ 注意:請於試卷內之「非選擇題作答區」作答,並應註明作答之題號。

You should include in your answer every piece of computation and every piece of reasoning so that the corresponding partial credit could be gained.

1. (20%) For nay two vectors $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ in \mathbb{R}^n , The convolution of \mathbf{x} and \mathbf{y} is the vector $\mathbf{x} * \mathbf{y}$ in \mathbb{R}^n with

$$(\mathbf{x} * \mathbf{y})_i = x_1 y_i + x_2 y_{i-1} + \ldots + x_i y_1 + x_{i+1} y_n + x_{i+2} y_{n-1} + \ldots + x_n y_{i+1}$$

for $1 \le i \le n$. For n = 2, this gives simply $(x_1, x_2) * (y_1, y_2) = (x_1y_1 + x_2y_2, x_1y_2 + x_2y_1)$.

- (a) Find the explicit formula for $(x_1, x_2, x_3) * (y_1, y_2, y_3)$.
- (b) Compute (3, -1, 4, 1) * (5, -9, 2, 6).
- (c) Prove that * is commutative for general n.
- (d) Find an "identity" e in \mathbb{R}^n such that e * x = x * e = x for all x in \mathbb{R}^n . Prove that the identity is unique.
- 2. (20%) Denote \mathbb{Z}_5 the finite field of 5 elements, in which the addition/muplitiplication are the same as in integers except taking modulo 5. Notice that there are exactly 625 2 \times 2 matrices whose entries are in \mathbb{Z}_5 .
 - (a) Determine the total number of 2×2 symmetric matrices over \mathbb{Z}_5 .
 - (b) Determine the total number of nonsingular 2×2 symmetric matrices over \mathbb{Z}_5 .
 - (c) Determine the total number of nonsingular 2×2 matrices over \mathbb{Z}_5 .
 - (d) For every $n \ge 1$, determine the total number of upper-triangular nonsingular $n \times n$ matrices over \mathbb{Z}_5 .
- 3. (20%) The rank (A) of a matrix A is the maximum number of linearly independent rows in A.
 - (a) Prove that for any $m \times n$ matrix A and any $n \times p$ matrix B, we have $\operatorname{rank}(AB) \leq \operatorname{rank}(B)$.
 - (b) Prove that for any $n \times n$ matrix A and any $n \times p$ matrix B, if A is invertible then rank(AB) = rank(B).
- (c) Determine rank (I_n) , rank (J_n) and rank $(J_n I_n)$, where I_n is the $n \times n$ identity matrix and J_n is the $n \times n$ matrix whose entries are all 1.
- (d) Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k, \mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_k$ are 2k vectors in \mathbb{R}^n such that $\mathbf{x}_i \mathbf{y}_i^{\mathrm{T}} = 0$ for $1 \leq i \leq k$ and $\mathbf{x}_i \mathbf{y}_i^{\mathrm{T}} = 1$ for $1 \le i < j \le k$. Prove that $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ (also $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_k$) are linearly independent. Consequently, $k \le n$.
- 4. (20%) Suppose M is an $n \times n$ matrix in which all entries are nonnegative and all column sums are 1.
 - (a) Prove that 1 is an eigenvalue of M.
 - (b) Prove that for each eigenvalue λ of M, we have $|\lambda| \leq 1$.
 - (c) For every n, give an $n \times n$ matrix whose eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ are all distinct but $|\lambda_i| = 1$ for all i.
 - (d) Prove that if all entries of M are positive, then M has exactly one eigenvalue λ with $|\lambda| = 1$.
- 5. (20%) (a) Prove that for any $n \times n$ matrix A the series $\sum_{k=0}^{\infty} \frac{A^k}{k!}$ converges; the sum is denoted by e^A .
 - (b) Compute e^{tA} for $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.
 - (c) Prove that if λ is an eigenvalue of A then e^{λ} is an eigenvalue of e^{A} .
 - (d) Prove that $\frac{d}{dt}e^{tA} = Ae^{tA}$.