國立臺灣大學 102 學年度碩士班招生考試試題

科目:線性代數(A)

1

節次:

There are five problems $1 \sim 5$ in total; some problems contain sub-problems, indexed by (a), (b), etc.

- 1. [15%] Let V be a finite dimensional vector space over a field F and $T: V \to V$ a linear operator. Let W be a subspace of V such that $T(W) \subset W$. Suppose that v_1, v_2, \cdots, v_r are eigenvectors of T associated with distinct eigenvalues such that $v_1 + v_2 + \cdots + v_r \in W$. Show that $v_i \in W$ for all $i = 1, 2, \dots, r$.
- 2. Let A and B be two $n \times n$ matrices over a field F.
 - (a) [20%] Show that AB and BA have the same trace and the same determinant.
 - (b) [10%] Give an explicit example of A and B such that AB and BA have different minimal polynomials. Remember to verify your answer.
- 3. [10%] Let V be a finite dimensional vector space over a field F and V* be the dual space (i.e., $V^* =$ all linear maps from V to F). Show that two non-zero vectors $v, w \in W$ are linearly independent if and only if there exists an $f \in V^*$ such that $f(v) = 0, f(w) \neq 0$.
- 4. Consider the space $M_n(F)$ of $n \times n$ matrices over a field F. Two matrices $A, B \in M_n(F)$ are called similar if there exists an invertible matrix $Q \in M_n(F)$ such that $A = Q^{-1}BQ$. In this case A and B have the same characteristic polynomial. A conjugacy class C is a maximal subset C of $M_n(F)$ such that all $A, B \in C$ are similar. In other words, the conjugacy class containing A is the set

$\{B \in M_n(F) \mid A \text{ and } B \text{ are similar}\}.$

The characteristic polynomial of a conjugacy class C is defined to be the characteristic polynomial of a matrix A in C.

- (a) [15%] In the case n=12 and $F=\mathbb{C}$, the field of complex numbers, what is the number of conjugacy classes with characteristic polynomial $(x^3-1)^4$? Verify your
- (b) [15%] In the case n=12 and $F=\mathbb{R}$, the field of real numbers, what is the number of conjugacy classes with characteristic polynomial $(x^3-1)^4$? Verify your answer.
- 5. [15%] Let V be a finite dimensional vector space over R with an inner product (,). Show that for any linear $T:V\to\mathbb{R}$, there exists a unique $v_T\in V$ such that $T(x)=(v_T,x)$ for all $x \in V$. Also show that the map from the dual V^* (= the vector space of all linear maps from V to R) to V assigning each T to v_T is linear and is an isomorphism.

試題隨然鄉回