國立臺灣大學98學年度碩士班招生考試試題

科目:線性代數(A)

共 / 頁之第 全 頁

Notations: \mathbb{R} , the real numbers; \mathbb{C} , the complex numbers; $M_n(K)$, the set of all $n \times n$ matrices with entries in a field K.

- (1) (10 %) Let V be a finite-dimensional vector space, U and W be subspaces of V. Suppose that $\dim(U+W)=\dim(U\cap W)+1$. Show that either $U\subseteq W$ or $W\subseteq U$.
- (2) (10 %) Let $A, B \in M_n(K)$ be two matrices, K a field. Prove that, if AB = A + B, then AB = BA.
- (3) (20 %) Consider the system of linear equations

$$x + (\lambda - 1)y + (\lambda - 2)z = 2$$
$$\lambda x + (2\lambda - 2)y + (\lambda - 2)z = \lambda + 1$$
$$(\lambda^2 - 2\lambda)x + \lambda z = -2\lambda.$$

Find the real values of λ such that this system of equations satisfies the following condition.

- (a) The system has no solution.
- (b) The system has a unique solution.
- (c) The set of the solutions of the equations is a line.
- (d) The set of the solutions of the equations is a plane.
- (4) (15%) Let $\{e_1, e_2, e_3\}$ be the standard basis of the Euclidean space \mathbb{R}^3 . Find an orientation-preserving orthogonal transformation T such that Te_1 is a unit vector normal to the plane x + y 1 = 0 and Te_3 is a unit vector normal to the plane x y + 1 = 0.
- (5) (15 %) Let $A = (a_{ij}), B = (a_{ij}b^{i-j}) \in M_n(K)$ where $b \neq 0$. Express the determinant of B in terms of det A and b.
- (6) (15 %) Consider the quadratic form

$$F(x, y, z, w) = \lambda(x^2 + y^2 + z^2 + w^2) + 2xy - 2yz + 2xz.$$

Find the real values of λ such that

- (a) the quadratic form is positive definite.
- (b) the quadratic form is negative definite.
- (7) (15 %) Let S and T be linear transformations on a finite-dimensional vector space over \mathbb{C} . Suppose ST=TS. Show that they have a common eigenvector.

試題隨卷繳回